
Iterating through list of numbers for
URL parameters

import requests

url = 'http://domain.com/product/'

Generate list of numbers from 1 to 100

Product_numbers = list(range(1, 100))

Loop to make the request with each number

for i in Product_numbers:

 r = requests.get(url+str(i))

 # Print response in text

 prinnt (r.text)

Pass By Reference
When two variables point to the same section of memory
hence any modification on one is passed to the other one.

x=2

y=x

print(y) // 2

y=y+2

print(x) // 4

Checking the type of experssion
int for integers, str for strings and float for
floats

type(12
type("Hello, Python 101!")

Typecasting: converting from type to
another
type (2 # checking object type
float (2 # Converting the integer to string
type(float(2 # checking the object type of yielded output of
float(2
int ('1') # Converting from strings to an integer
str (1 # Converting integer to string
int(True) # Converting from boolean true into integer. Result is
1
bool(1 # Converting from integer to boolean. Result is 1

/ : one slash stands for float division

//: double slash stands for integer
division

Assigning variables to mathematical
operations

 x = 3 + 2 * 2

 x = = (3 + 2) * 2

String indexes
Because indexing starts at 0, it means the first index is on the
index 0
name = "Michael Jackson" # assigning string to a variable
print(name[0 # printing the first letter, that is'M'.
print(name[7 # prints the space between the name and
surname.
Negative index can help us to count the element from the end
of the string
print(name[-1 # prints the last letter starting from the end of
the string. 'n'
print(name[-15 # prints the first letter starting from the end
of the string. 'n'

String Slicing: Obtaining multiple
characters from a string

print (name[0:3]) # prints M,i,c,h.

print (name[8:12]) # prints J,a,c,k

String Stride: used to define a set
step to jump between the string
letters

print (name[::2]) # prints M,c,a,l,J,c,s,n

print (name[0:4:2]) # prints M,c

String concatenation

statement = name + ' hello' # prints Michael Jackson

hello

String replication

statement = name * 3 # prints Michael Jackson three

times

Escape sequences.

print(" Michael Jackson \n is the best") # prints 'is

the best' to a new line

print(" Michael Jackson \t is the best") # prints tab

between Michael Jackson and is the best

print(" Michael Jackson \\ is the best") # prints

backslash between them

print(r" Michael Jackson \ is the best") # prints

backslash between them

String operations

a = "Thriller is the sixth studio album"

b = a.upper() # will convert the string a into upper

case letters

b = a.replace('Michael', 'Janet') # replaces michael

with janet.

name.find('el') # finds 'el' within the string and

returns the first index of it. In that case, its '5'

Lists
L  "Michael Jackson", 10.1,1982,"MJ",1
L35 # slicing same as slicing a string
L.extend(['pop', 10 # extending a list by adding two
elements; pop and 10
L  "Michael Jackson", 10.1,1982,"MJ",1,"pop",10
L.append(['a','b']) # appending a list inside the first list to
become nested list
L  "Michael Jackson", 10.1,1982,"MJ",1,"pop",10,['a','b']]
L0  'hard rock' # changing specific element
L  "hard rock", 10.1,1982,"MJ",1,"pop",10,['a','b']]
del(L0 # Deleting a specific element
L  10.1,1982,"MJ",1,"pop",10,['a','b']]
H 'hard rock'.split() # Converting a string into a list
H 'hard','rock']

List cloning

B  H # B and H are referencing the same list in memory. Any
change on H will reflect on B and not vice versa.
B  H # B now is referencing H so any change on H will not
reflect on B.

defining a tuple

tuple1 = ("disco",10,1.2)

accessing tuples elements, printing,
negative indexing, slicing and
concatenation works same as lists

len(tuple1) #returns the number of elements

sorted(tuple1) #returns sorted elements in the tuple

NestedT =(1, 2, ("pop", "rock") ,(3,4),("disco",(1,2)))

Nested tuple

NestedT[2][0] #pop

NestedT[2][1] #rock

NestedT[3][0] #3

NestedT[3][1] #4

NestedT[4][0] #disco

NestedT[4][1] #(1,2)

NestedT[4][1][0] #1

NestedT[4][1][1] #2

Dictionaries

A dictionary consists of keys and values. It is helpful to
compare a dictionary to a list.
Instead of the numerical indexes such as a list, dictionaries
have keys.
These keys are the keys that are used to access values within
a dictionary

Dict = {"key1": 1, "key2": "2", "key3": [3, 3, 3],

"key4": (4, 4, 4), ('key5'): 5, (0, 1): 6}

Dict["key1"] # returns 1

Each key is separated from its value by a colon ":". Commas
separate the items, and the whole dictionary is enclosed in
curly braces.
An empty dictionary without any items is written with just two
curly braces, like this "{}".

Dict.keys() # Get all the keys in dictionary

Dict.values() # Get all the values in dictionary

Dict['key1'] = '2007' # Append value with key into

dictionary

del(Dict['key1']) # Delete entries by key

sets
A set is a unique collection of objects in Python. You can
denote a set with a curly bracket {}.
Python will automatically remove duplicate items

set1 = {"pop", "rock", "soul", "hard rock", "R&B",

"disco"}

album_list = ["Michael Jackson", "Thriller", 1982,

"00:42:19", \

 "Pop, Rock, R&B", 46.0, 65, "30-Nov-82",

None, 10.0]

album_set = set(album_list) # Convert list to set

A = set(["Thriller", "Back in Black", "AC/DC"])

A.add("NSYNC") # Add element to set

A.remove("NSYNC") # Remove the element from set

"AC/DC" in A # Verify if the element is in the set

true/false

album_set1 = set(["Thriller", 'AC/DC', 'Back in Black'])

album_set2 = set(["AC/DC", "Back in Black", "The Dark

Side of the Moon"])

intersection = album_set1 & album_set2 # Find the

intersections or common elements

album_set1.intersection(album_set2) # Find the

intersections or common elements

album_set1.difference(album_set2) # find all the

elements that are only contained in album_set1

album_set2.difference(album_set1) #The elements in

album_set2 but not in album_set1

album_set1.union(album_set2) #The union corresponds to

all the elements in both sets

Conditions and Branching
For Loops

for i,x in enumerate(\['A','B','C'\]):

 print(i+1,x)

Result:
1 A
2 B
3 C

Functions
Functions blocks begin def followed by the function name
and parentheses () .
There are input parameters or arguments that should be
placed within these parentheses.
You can also define parameters inside these parentheses.
There is a body within every function that starts with a
colon (:) and is indented.
You can also place documentation before the body.
The statement return exits a function, optionally passing
back a value.

Define a function for multiple two
numbers

def Mult(a, b):

 c = a * b

 return(c)

 print('This is not printed')

result = Mult(12,2)

print(result)

Variables
The input to a function is called a formal parameter.
A variable that is declared inside a function is called a
local variable. The parameter only exists within the
function (i.e. the point where the function starts and
stops).
A variable that is declared outside a function definition is a
global variable, and its value is accessible and modifiable
throughout the program. We will discuss more about
global variables at the end of the lab

Pre-defined functions

album_ratings = [10.0, 8.5, 9.5, 7.0, 7.0, 9.5, 9.0,

9.5]

print(album_ratings)

sum(album_ratings) #Use sum() to add every element in a

list or tuple together

len(album_ratings) #Show the length of the list or tuple

Setting default argument values in
your custom functions
#Example for setting param with default value

def isGoodRating(rating=4):

 if(rating < 7):

 print("this album sucks it's rating is",rating)

 else:

 print("this album is good its rating is",rating)

Global variables

#Example

 artist = "Michael Jackson"

def printer(artist):

 global internal_var

 internal_var= "Whitney Houston"

 print(artist,"is an artist")

printer(artist)

printer(internal_var)

When the number of arguments are
unknown for a function, They can all
be packed into a tuple as shown:

 def printAll(*args): #All the arguments are 'packed'

into args which can be treated like a tuple

 print("No of arguments:", len(args))

 for argument in args:

 print(argument)

printAll('Horsefeather','Adonis','Bone') #printAll with

3 arguments

printAll('Sidecar','Long Island','Mudslide','Carriage')

#printAll with 4 arguments

Similarly, The arguments can also be
packed into a dictionary as shown

 def printDictionary(**args):

 for key in args:

 print(key + " : " + args[key])

printDictionary(Country='Canada',Province='Ontario',City

='Toronto')

Exception Handling
An exception is an error that occurs during the execution of
code. This error causes the code to raise an exception and if
not prepared to handle it will halt the execution of the code

Try Except
A try except will allow you to execute code that might raise
an exception and in the case of any exception or a specific
one we can handle or catch the exception and execute
specific code. This will allow us to continue the execution of
our program even if there is an exception.

Python tries to execute the code in the try block. In this case
if there is any exception raised by the code in the try block it
will be caught and the code block in the except block will be
executed.

Example [1

a = 1

try:

 b = int(input("Please enter a number to divide a"))

 a = a/b

 print("Success a=",a)

except:

 print("There was an error")

Example [2

potential code before try catch

try:

 # code to try to execute

except (ZeroDivisionError, NameError):

 # code to execute if there is an exception of the given

 types

code that will execute if there is no exception or a

one that we are handling

Example [3

potential code before try catch

try:

 # code to try to execute

except ZeroDivisionError:

 # code to execute if there is a ZeroDivisionError

except NameError:

 # code to execute if there is a NameError

code that will execute if there is no exception or a

one that we are handling

Example [4

a = 1

try:

 b = int(input("Please enter a number to divide a"))

 a = a/b

 print("Success a=",a)

except ZeroDivisionError:

 print("The number you provided cant divide 1 because

it is 0")

except ValueError:

 print("You did not provide a number")

except:

 print("Something went wrong")

Try Except Else and Finally
else allows one to check if there was no exception when
executing the try block. This is useful when we want to

execute something only if there were no errors.

finally allows us to always execute something even if there
is an exception or not. This is usually used to signify the end
of the try except.

Example [1

potential code before try catch

try:

 # code to try to execute

except ZeroDivisionError:

 # code to execute if there is a ZeroDivisionError

except NameError:

 # code to execute if there is a NameError

except:

 # code to execute if ther is any exception

else:

 # code to execute if there is no exception

finally:

 # code to execute at the end of the try except no

matter what

code that will execute if there is no exception or a

one that we are handling

Example [2

 a = 1

try:

 b = int(input("Please enter a number to divide a"))

 a = a/b

except ZeroDivisionError:

 print("The number you provided cant divide 1 because

it is 0")

except ValueError:

 print("You did not provide a number")

except:

 print("Something went wrong")

else:

 print("success a=",a)

finally:

 print("Processing Complete")

Classes, Objects and Methods
#Class is marked by having attributes (variables) that contain
data which make up the class. Example is a rectangle class
which has height, width and color as attributes
#object can be considered as a subset of the class with
certain attribute. Example is red rectangle which is an object
of the class rectangle.
#Methods are functions used to change and interact with
objects.

For example, lets say we would like to increase the radius by a
specified amount of a circle.

We can create a method called add_radius(r) that increases
the radius by r.

After applying the method to the "orange circle object", the
radius of the object increases accordingly. The “dot” notation
means to apply the method to the object, which is essentially
applying a function to the information in the object.

The first step in creating your own class is to use the class
keyword, then the name of the class

The next step is a special method called a constructor
init , which is used to initialize the object

The input are data attributes. The term self contains all the
attributes in the set. For example the self.color gives the
value of the attribute color and self.radius will give you the
radius of the object. We also have the method add_radius()
with the parameter r , the method adds the value of r to the
attribute radius. To access the radius we use the syntax
self.radius

Example [1

import matplotlib.pyplot as plt

%matplotlib inline

 # Create a class Circle

class Circle(object):

 # Constructor

 def __init__(self, radius=3, color='blue'):

 self.radius = radius

 self.color = color

 # Method

 def add_radius(self, r):

 self.radius = self.radius + r

 return(self.radius)

 # Method

 def drawCircle(self):

 plt.gca().add_patch(plt.Circle((0, 0),

radius=self.radius, fc=self.color))

 plt.axis('scaled')

 plt.show()

Create an object RedCircle

RedCircle = Circle(10, 'red')

Find out the methods can be used on the object

RedCircle

dir(RedCircle)

Print the object attribute color

RedCircle.color

Set the object attribute radius

RedCircle.radius = 1

RedCircle.radius

Call the method drawCircle

RedCircle.drawCircle()

Use method to change the object attribute radius

print('Radius of object:',RedCircle.radius)

RedCircle.add_radius(2)

print('Radius of object of after applying the method

add_radius(2):',RedCircle.radius)

RedCircle.add_radius(5)

print('Radius of object of after applying the method

add_radius(5):',RedCircle.radius)

Example [2

Create a new Rectangle class for creating a rectangle

object

class Rectangle(object):

 # Constructor

 def __init__(self, width=2, height=3, color='r'):

 self.height = height

 self.width = width

 self.color = color

 # Method

 def drawRectangle(self):

 plt.gca().add_patch(plt.Rectangle((0, 0),

self.width, self.height ,fc=self.color))

 plt.axis('scaled')

 plt.show()

Create a new object rectangle

SkinnyBlueRectangle = Rectangle(2, 10, 'blue')

Print the object attribute height

SkinnyBlueRectangle.height

Print the object attribute width

SkinnyBlueRectangle.width

Print the object attribute color

SkinnyBlueRectangle.color

Use the drawRectangle method to draw the shape

SkinnyBlueRectangle.drawRectangle()

Example [3
Text Analysis
You have been recruited by your friend, a linguistics
enthusiast, to create a utility tool that can perform analysis on
a given piece of text. Complete the class 'analysedText' with
the following methods -

Constructor - Takes argument 'text',makes it lower case
and removes all punctuation. Assume only the following
punctuation is used - period (.), exclamation mark (!,
comma (,) and question mark (?. Store the argument in
"fmtText"
freqAll - returns a dictionary of all unique words in the text
along with the number of their occurences.
freqOf - returns the frequency of the word passed in
argument.

The skeleton code has been given to you. Docstrings can be
ignored for the purpose of the exercise.
Hint: Some useful functions are replace() , lower() , split() ,
count()

import sys

class analysedText(object):

 def __init__ (self, text):

 # remove punctuation

 formattedText =

text.replace('.','').replace('!','').replace('?','').rep

lace(',','')

 # make text lowercase

 formattedText = formattedText.lower()

 self.fmtText = formattedText

 def freqAll(self):

 # split text into words

 wordList = self.fmtText.split(' ')

 # Create dictionary

 freqMap = {}

 for word in set(wordList): # use set to remove

duplicates in list

 freqMap[word] = wordList.count(word)

 return freqMap

 def freqOf(self,word):

 # get frequency map

 freqDict = self.freqAll()

 if word in freqDict:

 return freqDict[word]

 else:

 return 0

sampleMap = {'eirmod': 1,'sed': 1, 'amet': 2, 'diam': 5,

'consetetur': 1, 'labore': 1, 'tempor': 1, 'dolor': 1,

'magna': 2, 'et': 3, 'nonumy': 1, 'ipsum': 1, 'lorem':

2}

print("Constructor: ")

try:

 samplePassage = analysedText("Lorem ipsum dolor!

diam amet, consetetur Lorem magna. sed diam nonumy

eirmod tempor. diam et labore? et diam magna. et diam

amet.")

 #samplePassage.fmtText == "lorem ipsum dolor diam

amet consetetur lorem magna sed diam nonumy eirmod

tempor diam et labore et diam magna et diam amet"

 print(samplePassage.fmtText)

except:

 print("Error detected. Recheck your function ")

print("freqAll: ")

try:

 wordMap = samplePassage.freqAll()

 print(wordMap) #{'ipsum': 1, 'diam': 5, 'amet': 2,

'et': 3, 'consetetur': 1, 'labore': 1, 'dolor': 1,

'eirmod': 1, 'sed': 1, 'tempor': 1, 'magna': 2,

'nonumy': 1, 'lorem': 2}

 print(samplePassage.fmtText)

 wordMap==sampleMap

 print(wordMap) # lorem ipsum dolor diam amet

consetetur lorem magna sed diam nonumy eirmod tempor

diam et labore et diam magna et diam amet

except:

 print("Error detected. Recheck your function ")

print("freqOf: ")

try:

 passed = True

 for word in sampleMap:

 if samplePassage.freqOf(word) !=

sampleMap[word]:

 passed = False

 break

 print(passed)

except:

 print("Error detected. Recheck your function ")

Example [4

class Points(object):

 def __init__(self,x,y):

 self.x=x

 self.y=y

 def print_point(self):

 print('x=',self.x,' y=',self.y)

p1=Points("A","B")

p1.print_point()

output: x= A y= B

Example [5

class Points(object):

def __init__(self,x,y):

self.x=x

self.y=y

def print_point(self):

print('x=',self.x,' y=',self.y)

p2=Points(1,2)

p2.x='A'

p2.print_point()

output: x= A y=2

Downloading files ove the network

import urllib.request

url = 'https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

PY0101EN-

SkillsNetwork/labs/Module%204/data/example1.txt'

filename = 'Example1.txt'

urllib.request.urlretrieve(url, filename)

reading and writing files
One way to read or write a file in Python is to use the built-in
open function. The open function provides a File object that
contains the methods and attributes you need in order to
read, save, and manipulate the file. In this notebook, we will
only cover .txt files. The first parameter you need is the file
path and the file name

r Read mode for reading files
w Write mode for writing files

Example [1
``
example1  "Example1.txt"
file1  open(example1, "r")

Print the path of file

file1.name

Print the mode of file, either 'r' or 'w'

file1.mode

Read the file

FileContent = file1.read()
FileContent

Print the file with '\n' as a new line

print(FileContent)

Type of file content

type(FileContent)

Close file after finish

file1.close()
``

Example [2
Using the with statement is better practice, it automatically
closes the file even if the code encounters an exception. The
code will run everything in the indent block then close the file
object.

``

Open file using with

with open(example1, "r") as file1
FileContent = file1.read()
print(FileContent)

Verify if the file is closed

file1.closed
``

We don’t have to read the entire file, for example, we can read
the first 4 characters by entering three as a parameter to the
method .read()
Once the method .read(4) is called the first 4 characters are
called. If we call the method again, the next 4 characters are
called

Read first four characters

with open(example1, "r") as file1:

 print(file1.read(4))

 print(file1.read(16))

 print(file1.read(5))

 print(file1.read(9))

Read one line

with open(example1, "r") as file1:

 print("first line: " + file1.readline())

#Iterate through the lines

with open(example1,"r") as file1:

 i = 0;

 for line in file1:

 print("Iteration", str(i), ": ", line)

 i = i + 1

Read all lines and save as a list

with open(example1, "r") as file1:

 FileasList = file1.readlines()

Print the first line

FileasList[0]

Print the third line

FileasList[2]

Example [3

copying from example.txt to example3.txt

with open('Example2.txt','r') as readfile:

 with open('Example3.txt','w') as writefile:

 for line in readfile:

 writefile.write(line)

REST APIs
Rest API’s function by sending a request, the request is
communicated via HTTP message. The HTTP message
usually contains a JSON file. This contains instructions for
what operation we would like the service or resource to
perform. In a similar manner, API returns a response, via an
HTTP message, this response is usually contained within a
JSON

Example [1
Create one candlestick graph for Bitcoin. Get the price data
for 30 days with 24 observation per day, 1 per hour. We will
find the max, min, open, and close price per day meaning we
will have 30 candlesticks and use that to generate the
candlestick graph. Although we are using the CoinGecko API
we will use a Python client/wrapper for the API called
PyCoinGecko. PyCoinGecko will make performing the
requests easy and it will deal with the enpoint targeting.

Lets start off by getting the data we need. Using the
get_coin_market_chart_by_id(id, vs_currency, days) . id is
the name of the coin you want, vs_currency is the currency

https://github.com/man-c/pycoingecko

you want the price in, and days is how many days back from
today you want

from pycoingecko import CoinGeckoAPI

cg = CoinGeckoAPI()

bitcoin_data =

cg.get_coin_market_chart_by_id(id='bitcoin',

vs_currency='usd', days=30)

type(bitcoin_data)

The response we get is in the form of a JSON which

includes the price, market caps, and total volumes along

with timestamps for each observation. We are focused on

the prices so we will select that data

bitcoin_price_data = bitcoin_data['prices']

bitcoin_price_data[0:5]

print (bitcoin_price_data[0:5])

output

\[\[1617376597093, 59567.96331216299\], \[1617379866125,

59443.62385220146\], \[1617382926554,

59247.032989256695\], \[1617386967819,

59157.820800411704\], \[1617390158842,

59090.492263376924\]\]

data = pd.DataFrame(bitcoin_price_data, columns=

['TimeStamp', 'Price'])

print(data)

output

 TimeStamp Price

0 1617376597093 59567.963312

1 1617379866125 59443.623852

2 1617382926554 59247.032989

3 1617386967819 59157.820800

4 1617390158842 59090.492263

..

718 1619953430013 56992.622784

719 1619957107351 57181.091636

720 1619960946179 56908.094938

721 1619964994665 56902.913873

722 1619966449000 56868.155047

Now that we have the DataFrame we will convert the

timestamp to datetime and save it as a column called

`Date`. We will map our `unix_to_datetime` to each

timestamp and convert it to a readable datetime.

data['Date'] = pd.to_datetime(data['TimeStamp'],

unit='ms')

print(data)

output

 TimeStamp Price Date

0 1617376597093 59567.963312 2021-04-02 15:16:37.093

1 1617379866125 59443.623852 2021-04-02 16:11:06.125

2 1617382926554 59247.032989 2021-04-02 17:02:06.554

3 1617386967819 59157.820800 2021-04-02 18:09:27.819

4 1617390158842 59090.492263 2021-04-02 19:02:38.842

..

718 1619953430013 56992.622784 2021-05-02 11:03:50.013

719 1619957107351 57181.091636 2021-05-02 12:05:07.351

720 1619960946179 56908.094938 2021-05-02 13:09:06.179

721 1619964994665 56902.913873 2021-05-02 14:16:34.665

722 1619966449000 56868.155047 2021-05-02 14:40:49.000

Using this modified dataset we can now group by the

`Date` and find the min, max, open, and close for the

candlesticks

candlestick_data = data.groupby(data.Date.dt.date,

as_index=False).agg({"Price": ['min', 'max', 'first',

'last']})

print (candlestick_data)

Finally we are now ready to use plotly to create our

Candlestick Chart

fig = go.Figure(data=[go.Candlestick(x=data['Date'],

 open=candlestick_data['Price']['first'],

 high=candlestick_data['Price']['max'],

 low=candlestick_data['Price']['min'],

 close=candlestick_data['Price']['last'])

])

fig.update_layout(xaxis_rangeslider_visible=False)

fig.show()

Panda Library for Data analysis and
CSV processing
``
import pandas
import pandas as pd

Read data from CSV file

csv_path = 'https://cf-courses-data.s3.us.cloud-object-
storage.appdomain.cloud/IBMDeveloperSkillsNetwork-
PY0101EN
SkillsNetwork/labs/Module%204/data/TopSellingAlbums.csv'

df = pd.read_csv(csv_path)

https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-PY0101EN-SkillsNetwork/labs/Module%204/data/TopSellingAlbums.csv'

read_csv : built in function in pandas to
read csv file

read_excel: built in function in pandas to
read xlsx file

df: dataframe. Dataframes comprised of
rows and columns.

df.head()

examine the first five rows of the
dataframe

converting a dictionary into a dataframe.
keys are mapped as column labels and
values correspond to the rows.

dictionary = {key1:value, key2:value}
dic-frame =pd.DataFrame(dictionary)

creating data frame of one column. In this
case it can be used to access the column
'Length' of the dataframe 'df'

x = df'Length'
x

Access to multiple columns

y = df'Artist','Length','Genre'
y

Accessing specific rows and columns in a
dataframe

Access the value on the first row and the
first column

df.iloc[0, 0

Access the value on the first row and the
third column

df.iloc[0,2

Access the column using the name

df.loc[1, 'Artist']

Slicing the dataframe

df.iloc[02, 03

Slicing the dataframe using name

df.loc[02, 'Artist':'Released']
``

Transform Function in Pandas

#import library

import pandas as pd

import numpy as np

#creating a dataframe

df=pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8,

9]]), columns=['a', 'b', 'c'])

df

#applying the transform function: we want to add 10 to

each element in a dataframe

df = df.transform(func = lambda x : x + 10)

df

we will use DataFrame.transform() function to find the

square root to each element of the dataframe

result = df.transform(func = ['sqrt'])

JSON file Format with Pandas
JSON is built on two structures:

 A collection of name/value pairs. In various languages, this
is realized as an object, record, struct, dictionary, hash
table, keyed list, or associative array.

 An ordered list of values. In most languages, this is
realized as an array, vector, list, or sequence.

JSON is a language-independent data format. It was derived
from JavaScript, but many modern programming languages
include code to generate and parse JSON-format data. It is a
very common data format, with a diverse range of
applications.

The text in JSON is done through quoted string which
contains the value in key-value mapping within { }. It is similar
to the dictionary in Python.

Python supports JSON through a built-in package called json.
To use this feature, we import the json package in Python
script

Writing JSON to a File

This is usually called serialization. It is the process of
converting an object into a special format which is suitable for
transmitting over the network or storing in file or database

To handle the data flow in a file, the JSON library in Python
uses dump() or dumps() function to convert the Python
objects into their respective JSON object, so it makes easy to
write data to files

serialization using dump() function

json.dump() method can be used for writing to JSON file.

Syntax: json.dump(dict, file_pointer)

Parameters:

 dictionary – name of dictionary which should be
converted to JSON object.

 file pointer – pointer of the file opened in write or append
mod

serialization using dumps() function

json.dumps() that helps in converting a dictionary to a JSON
object.

It takes two parameters:

 dictionary – name of dictionary which should be
converted to JSON object.

 indent – defines the number of units for indentation

import json

person = {

 'first_name' : 'Mark',

 'last_name' : 'abc',

 'age' : 27,

 'address': {

 "streetAddress": "21 2nd Street",

 "city": "New York",

 "state": "NY",

 "postalCode": "10021-3100"

 }

}

serializing Json object to file with dump()

with open('person.json', 'w') as f: # writing JSON

object

 json.dump(person, f)

Serializing json from a dictionary with dumps()

json_object = json.dumps(person, indent = 4)

Writing to sample.json

with open("sample.json", "w") as outfile:

 outfile.write(json_object)

Reading JSON to a File

This process is usually called Deserialization It is the reverse
of serialization. It converts the special format returned by the
serialization back into a usable object.

Using json.load()

The JSON package has json.load() function that loads the
json content from a json file into a dictionary.

It takes one parameter:

File pointer: A file pointer that points to a JSON file

import json

Opening JSON file

with open('sample.json', 'r') as openfile:

 # Reading from json file

 json_object = json.load(openfile)

print(json_object)

print(type(json_object))

XLSX file Format with Pandas

import pandas as pd

import urllib.request

urllib.request.urlretrieve("https://cf-courses-

data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

PY0101EN-

SkillsNetwork/labs/Module%205/data/file_example_XLSX_10.

xlsx", "sample.xlsx")

df = pd.read_excel("sample.xlsx")

XML file Format with Pandas
XML is also known as Extensible Markup Language. As the
name suggests, it is a markup language. It has certain rules
for encoding data. XML file format is a human-readable and
machine-readable file format.

Pandas does not include any methods to read and write XML
files. Here, we will take a look at how we can use other
modules to read data from an XML file, and load it into a
Pandas DataFrame

The xml.etree.ElementTree module comes built-in with
Python. It provides functionality for parsing and creating XML
documents. ElementTree represents the XML document as a
tree. We can move across the document using nodes which
are elements and sub-elements of the XML file

import xml.etree.ElementTree as ET

create the file structure

employee = ET.Element('employee')

details = ET.SubElement(employee, 'details')

first = ET.SubElement(details, 'firstname')

second = ET.SubElement(details, 'lastname')

third = ET.SubElement(details, 'age')

first.text = 'Shiv'

second.text = 'Mishra'

third.text = '23'

create a new XML file with the results

mydata1 = ET.ElementTree(employee)

myfile = open("items2.xml", "wb")

myfile.write(mydata)

with open("new_sample.xml", "wb") as files:

 mydata1.write(files)import xml.etree.ElementTree as

ET

create the file structure

employee = ET.Element('employee')

details = ET.SubElement(employee, 'details')

first = ET.SubElement(details, 'firstname')

second = ET.SubElement(details, 'lastname')

third = ET.SubElement(details, 'age')

first.text = 'Shiv'

second.text = 'Mishra'

third.text = '23'

create a new XML file with the results

mydata1 = ET.ElementTree(employee)

myfile = open("items2.xml", "wb")

myfile.write(mydata)

with open("new_sample.xml", "wb") as files:

 mydata1.write(files)

Let's have a look at a one ways to read XML data and put it in
a Pandas DataFrame. You can see the XML file in the Notepad
of your local machine

import pandas as pd

import xml.etree.ElementTree as etree

!wget https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

PY0101EN-SkillsNetwork/labs/Module%205/data/Sample-

employee-XML-file.xml

You would need to firstly parse an XML file and create

a list of columns for data frame. then extract useful

information from the XML file and add to a pandas data

frame.

tree = etree.parse("Sample-employee-XML-file.xml")

root = tree.getroot()

columns = ["firstname", "lastname", "title", "division",

"building","room"]

datatframe = pd.DataFrame(columns = columns)

for node in root:

 firstname = node.find("firstname").text

 lastname = node.find("lastname").text

 title = node.find("title").text

 division = node.find("division").text

 building = node.find("building").text

 room = node.find("room").text

 datatframe = datatframe.append(pd.Series([firstname,

lastname, title, division, building, room], index =

columns), ignore_index = True)

Correspondingly, Pandas enables us to save the dataset

to csv by using the **dataframe.to_csv()** method, you

can add the file path and name along with quotation

marks in the brackets.

For example, if you would save the dataframe df as

employee.csv to your local machine

datatframe.to_csv("employee.csv", index=False)

Binary file Format with Pandas
"Binary" files are any files where the format isn't made up of
readable characters. It contain formatting information that
only certain applications or processors can understand. While
humans can read text files, binary files must be run on the
appropriate software or processor before humans can read
them.

Binary files can range from image files like JPEGs or GIFs,
audio files like MP3s or binary document formats like Word or
PDF

Reading the Image file

Python supports very powerful tools when comes to image
processing. Let’s see how to process the images using
PILlibrary.

PIL is the Python Imaging Library which provides the python
interpreter with image editing capabilities

importing PIL

from PIL import Image

import urllib.request

Downloading dataset

urllib.request.urlretrieve("https://hips.hearstapps.com/

hmg-prod.s3.amazonaws.com/images/dog-puppy-on-garden-

royalty-free-image-1586966191.jpg", "dog.jpg")

Read image

img = Image.open('dog.jpg')

Output Images

display(img)

Secnario For Analysing Data with
Pandas
the Diabetes Dataset is an online source, and it is in CSV
(comma separated value) format. Let's use this dataset as an
example to practice data reading

Context This dataset is originally from the National Institute
of Diabetes and Digestive and Kidney Diseases. The
objective of the dataset is to diagnostically predict whether or
not a patient has diabetes, based on certain diagnostic
measurements included in the dataset. Several constraints

were placed on the selection of these instances from a larger
database. In particular, all patients here are females at least
21 years old of Pima Indian heritage.

Content The datasets consists of several medical predictor
variables and one target variable, Outcome. Predictor
variables includes the number of pregnancies the patient has
had, their BMI, insulin level, age, and so on

We have 768 rows and 9 columns. The first 8 columns
represent the features and the last column represent the
target/label

Import pandas library

import pandas as pd

path = "https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

PY0101EN-

SkillsNetwork/labs/Module%205/data/diabetes.csv"

df = pd.read_csv(path)

After reading the dataset, we can use the

dataframe.head(n) method to check the top n rows of

the dataframe; where n is an integer. Contrary to

dataframe.head(n), **dataframe.tail(n)** will show

you the bottom n rows of the dataframe

show the first 5 rows using dataframe.head() method

print("The first 5 rows of the dataframe")

df.head(5)

view the dimensions of the dataframe

df.shape

df.info()

This method prints information about a DataFrame

including the index dtype and columns, non-null values

and memory usage

df.describe()

Pandas **describe()** is used to view some basic

statistical details like percentile, mean, std etc. of a

data frame or a series of numeric values. When this

method is applied to a series of string, it returns a

different output

We use Python's built-in functions to identify these

missing values. There are two methods to detect missing

data:

.isnull()

.notnull()

The output is a boolean value indicating whether the

value that is passed into the argument is in fact

missing data

missing_data = df.isnull()

missing_data.head(5)

Count missing values in each column

(http://localhost:8888/notebooks/Downloads/PY0101EN-

5.4_WorkingWithDifferentFileTypes.ipynb#Count-missing-

values-in-each-column)

Using a for loop in Python, we can quickly figure out

the number of missing values in each column. As

mentioned above, "True" represents a missing value,

"False" means the value is present in the dataset. In

the body of the for loop the method ".value_counts()"

counts the number of "True" values

for column in missing_data.columns.values.tolist():

 print(column)

 print (missing_data[column].value_counts())

 print("")

Correct data

format(http://localhost:8888/notebooks/Downloads/PY0101E

N-5.4_WorkingWithDifferentFileTypes.ipynb#Correct-data-

format)

Check all data is in the correct format (int, float,

text or other).

In Pandas, we use

.dtype() to check the data type

.astype() to change the data type

Numerical variables should have type **'float'** or

'int'.

df.dtypes

Visualization is one of the best way to get

insights from the dataset. **Seaborn** and

Matplotlib are two of Python's most powerful

visualization libraries

import matplotlib.pyplot as plt

import seaborn as sns

labels= 'Diabetic','Not Diabetic'

plt.pie(df['Outcome'].value_counts(),labels=labels,autop

ct='%0.02f%%')

plt.legend()

plt.show()

Numpy LLibrary for scientific
computations
A numpy array or ND array is similar to a list. It's usually fixed
in size and each element is of the same type, in this case
integers

cast a list to numpy array

import numpy as np

a=np.array([1,2,3,4,5,6])

size of the array : 5

a.size

dimension of the array : 1

a.ndim

a.shape

returns a tuple of integers indicating the size of the

array in each dimension

a[0]=100

change value of the first element

d=a[1:4]

slicing: choosing elements 2,3,4 and assign them to a

new array

v=[1,0]

va=np.array([1,0])

u=[0,1]

ua=np.array([0,1])

z=[]

for n,m in zip(u,v)

 z.append(n+m)

za=np.array(z)

Adding two lists together or vectors together.

b=2*z

multiplying the array z with 2. Each elements will be

multiplied by 2.

c=np.dot(va,ua)

np.dot multiplies corresponding elements and finally

adds them together: c= 1*0 + 0*1 = 0

e=z+1

adds one to each elements of the array z

mean_e=e.mean()

calculates the mean of e array elements.

we can access the data via an index. As with the list, we can
access each element with an integer and a square bracket

plotting arays

x=np.linspace(0,2*np.pi,100)

x is array of 100 elements starts at 0 and ends at

2*np.pi

y=np.sin(x)

y is an array that corresponds to the sin function of

each element of x

import matplotlib.pyplot as plt

importing the plot library

%matplotlib inline

display the plot

 plt.plot(x,y)

plot the arrays

2D Arrays

a=[[11,12,13],[21,22,23],[31,32,33]]

A=np.array(a)

A.shape

returns the tuple (3,3) (number of rows, number of

columns)

A.size

returns 9 or 3*3

It is helpful to visualize the numpy array as a rectangular array
each
nested lists corresponds to a different row of the matrix.

The indexing is illustrated below

Adding, subtracting, multiplication and multiplying by a
number applies the same way as in 1D arrays.

IBM Speech to Text API key

4DiNejEJNu9hTGforCYYBhFRQVZfbV6A1hszmAV-ecw_

https://api.eu-de.speech-to-

text.watson.cloud.ibm.com/instances/381ffda6-0e1a-4d81-

8205-8b75726a5b53

IBM Language translator API key

 ePlcBBRCH3ICSnDhXJqCS2XZlv9zWMTRlfnIwjHbXjQN

 https://api.eu-gb.language-

translator.watson.cloud.ibm.com/instances/affe2127-f05d-

43e4-a302-e6b30b0dfc11

Webscrabbing
Beautiful Soup is a Python library for pulling data out of HTML
and XML files, we will focus on HTML files. This is
accomplished by representing the HTML as a set of objects
with methods used to parse the HTML. We can navigate the
HTML as a tree and/or filter out what we are looking for

from bs4 import BeautifulSoup

this module helps in web scrapping.

import requests

this module helps us to download a web page

html="<!DOCTYPE html><html><head><title>Page

Title</title></head><body><h3><b id='boldest'>Lebron

James</h3><p> Salary: $ 92,000,000 </p><h3> Stephen

Curry</h3><p> Salary: $85,000, 000 </p><h3> Kevin Durant

</h3><p> Salary: $73,200, 000</p></body></html>"

soup = BeautifulSoup(html, 'html5lib')

parse a document, pass it into the `BeautifulSoup`

constructor, the `BeautifulSoup` object, which

represents the document as a nested data structure

print(soup.prettify())

display the HTML in the nested structure

tag_object=soup.title

print("tag object:",tag_object)

The `Tag` object corresponds to an HTML tag in the

original document, for example, the tag title. Prints

the page title

output: tag object: <title>Page Title</title>

tag_object=soup.h3

print("tag object:",tag_object)

print h3 tag and if there is more than one, print the

first occurrence

output: tag object: <h3><b id="boldest">Lebron

James</h3>

tag_child =tag_object.b

print("tag child:",tag_child)

print the b tag

output: tag child: <b id="boldest">Lebron James

parent_tag=tag_child.parent

print("parent_tag:",parent_tag)

print the tag parent to b which in this case is h3

output:parent_tag: <h3><b id="boldest">Lebron

James</h3>

body_element=tag_object.parent

print("body_element:",body_element)

print the parent to h3

output:body_element: body_element: <body><h3><b

id="boldest">Lebron James</h3><p> Salary: $

92,000,000 </p><h3> Stephen Curry</h3><p> Salary:

$85,000, 000 </p><h3> Kevin Durant </h3><p> Salary:

$73,200, 000</p></body>

sibling_1=tag_object.next_sibling

print("sibling_1:",sibling_1)

print the sibiling to the tag_object h3

output: sibling_1: <p> Salary: $ 92,000,000 </p>

sibling_2=sibling_1.next_sibling

print("sibling_2:",sibling_2)

output: sibling_2: <h3> Stephen Curry</h3>

sibiling_3=sibling_2.next_sibling

print("sibiling_3:",sibiling_3)

output: sibiling_3: <p> Salary: $85,000, 000 </p>

tag_child_id= tag_child['id']

print("tag_child_id:",tag_child_id)

output:tag_child_id: boldest

tag_child.get('id')

tag_string=tag_child.string

print("tag_string:",tag_string)

output:tag_string: Lebron James

Filter with findall()
The find_all() method looks through a tag’s descendants
and retrieves all descendants that match your filters.

The Method signature for find_all(name, attrs, recursive,
string, limit, **kwargs)

When we set the name parameter to a tag name, the method
will extract all the tags with that name and its children.

based on tags

from bs4 import BeautifulSoup

this module helps in web scrapping.

import requests

this module helps us to download a web page

table="<table><tr><td id='flight'>Flight No</td>

<td>Launch site</td> <td>Payload mass</td></tr><tr>

<td>1</td><td>Florida<a>

</td><td>300 kg</td></tr><tr><td>2</td><td>Texas

</td><td>94 kg</td></tr><tr><td>3</td><td>Florida<a>

</td><td>80 kg</td></tr></table>"

table_bs = BeautifulSoup(table, 'html5lib')

table_rows=table_bs.find_all('tr')

#extracting the tag 'tr' and all its children

output is the below list where each element is a tag

object:

[<tr><td id="flight">Flight No</td><td>Launch

site</td> <td>Payload mass</td></tr>,

<tr> <td>1</td><td>Florida

<a></td><td>300 kg</td></tr>,

<tr><td>2</td><td>Texas

</td><td>94 kg</td></tr>,

<tr><td>3</td><td>Florida

<a> </td><td>80 kg</td></tr>\]

table_rows

first_row =table_rows[0]

first_row

output : <tr><td id="flight">Flight No</td><td>Launch

site</td> <td>Payload mass</td></tr>

for i,row in enumerate(table_rows):

 print("row",i,"is",row)

output

row 0 is <tr><td id="flight">Flight No</td><td>Launch

site</td> <td>Payload mass</td></tr>

row 1 is <tr> <td>1</td><td>Florida

<a></td><td>300 kg</td></tr>

row 2 is <tr><td>2</td><td>Texas

</td><td>94 kg</td></tr>

row 3 is <tr><td>3</td><td>Florida

<a> </td><td>80 kg</td></tr>

for i,row in enumerate(table_rows):

 print("row",i)

 cells=row.find_all('td')

 for j,cell in enumerate(cells):

 print('colunm',j,"cell",cell)

output

row 0

colunm 0 cell <td id="flight">Flight No</td>

colunm 1 cell <td>Launch site</td>

colunm 2 cell <td>Payload mass</td>

row 1

colunm 0 cell <td>1</td>

colunm 1 cell <td>Florida

<a></td>

colunm 2 cell <td>300 kg</td>

row 2

colunm 0 cell <td>2</td>

colunm 1 cell <td>Texas

</td>

colunm 2 cell <td>94 kg</td>

row 3

colunm 0 cell <td>3</td>

colunm 1 cell <td>Florida

<a> </td>

colunm 2 cell <td>80 kg</td>

As row is a cell object, we can apply the method find_all
to it and extract table cells in the object cells using the tag
td , this is all the children with the name td . The result is a
list, each element corresponds to a cell and is a Tag object,
we can iterate through this list as well. We can extract the
content using the string attribute.

based on strings

With string you can search for strings instead of tags, where
we find all the elments with Florida
table_bs.find_all(string="Florida")

The find_all() method scans the entire document looking
for results, it’s if you are looking for one element you can use
the find() method to find the first element in the document.
Consider the following two table

two_tables="<h3>Rocket Launch </h3><p><table

class='rocket'><tr><td>Flight No</td><td>Launch

site</td> <td>Payload mass</td></tr><tr><td>1</td>

<td>Florida</td><td>300 kg</td></tr><tr><td>2</td>

<td>Texas</td><td>94 kg</td></tr><tr><td>3</td>

<td>Florida </td><td>80 kg</td></tr></table></p><p>

<h3>Pizza Party </h3><table class='pizza'><tr><td>Pizza

Place</td><td>Orders</td> <td>Slices </td></tr><tr>

<td>Domino's Pizza</td><td>10</td><td>100</td></tr><tr>

<td>Little Caesars</td><td>12</td><td >144 </td></tr>

<tr><td>Papa John's </td><td>15 </td><td>165</td></tr>"

two_tables_bs= BeautifulSoup(two_tables, 'html.parser')

two_tables_bs.find("table")

output

<table class="rocket"><tr><td>Flight No</td><td>Launch

site</td> <td>Payload mass</td></tr><tr><td>1</td>

<td>Florida</td><td>300 kg</td></tr><tr><td>2</td>

<td>Texas</td><td>94 kg</td></tr><tr><td>3</td>

<td>Florida </td><td>80 kg</td></tr></table>

two_tables_bs.find("table",class_='pizza')

output

<table class="pizza"><tr><td>Pizza Place</td>

<td>Orders</td> <td>Slices </td></tr><tr><td>Domino's

Pizza</td><td>10</td><td>100</td></tr><tr><td>Little

Caesars</td><td>12</td><td>144 </td></tr><tr><td>Papa

John's </td><td>15 </td><td>165</td></tr></table>

Downloading And Scraping The
Contents Of A Web Page

url = "http://www.ibm.com"

data = requests.get(url).text

soup = BeautifulSoup(data,"html5lib") # create a soup

object using the variable 'data'

scrape links

for link in soup.find_all('a',href=True):

in html anchorlink is represented by the tag <a>

 print(link.get('href'))

scrape images

for link in soup.find_all('img'):# in html image is

represented by the tag

 print(link)

 print(link.get('src'))

Scrape data from HTML tables

#The below url contains an html table with data about

colors and color codes.

url = "https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBM-DA0321EN-

SkillsNetwork/labs/datasets/HTMLColorCodes.html"

get the contents of the webpage in text format and

store in a variable called data

data = requests.get(url).text

soup = BeautifulSoup(data,"html5lib")

#find a html table in the web page

table = soup.find('table')

in html table is represented by the tag <table>

#Get all rows from the table

for row in table.find_all('tr'):

in html table row is represented by the tag <tr>

 # Get all columns in each row.

 cols = row.find_all('td')

 # in html a column is represented by the tag <td>

 color_name = cols[2].string

 # store the value in column 3 as color_name

 color_code = cols[3].string

 # store the value in column 4 as color_code

 print("{}--->{}".format(color_name,color_code))

output

Color Name--->None

lightsalmon--->#FFA07A

salmon--->#FA8072

darksalmon--->#E9967A

lightcoral--->#F08080

coral--->#FF7F50

tomato--->#FF6347

orangered--->#FF4500

gold--->#FFD700

orange--->#FFA500

darkorange--->#FF8C00

lightyellow--->#FFFFE0

lemonchiffon--->#FFFACD

papayawhip--->#FFEFD5

moccasin--->#FFE4B5

peachpuff--->#FFDAB9

palegoldenrod--->#EEE8AA

khaki--->#F0E68C

darkkhaki--->#BDB76B

yellow--->#FFFF00

lawngreen--->#7CFC00

chartreuse--->#7FFF00

limegreen--->#32CD32

lime--->#00FF00

forestgreen--->#228B22

green--->#008000

powderblue--->#B0E0E6

lightblue--->#ADD8E6

lightskyblue--->#87CEFA

skyblue--->#87CEEB

deepskyblue--->#00BFFF

lightsteelblue--->#B0C4DE

dodgerblue--->#1E90FF

Scrape data from HTML tables into a
DataFrame using BeautifulSoup and
Pandas

import pandas as pd

import requests

from bs4 import BeautifulSoup

The below url contains html tables with data about

world population.

url = "https://en.wikipedia.org/wiki/World_population"

get the contents of the webpage in text format and

store in a variable called data

data = requests.get(url).text

soup = BeautifulSoup(data,"html5lib")

#find all html tables in the web page

tables = soup.find_all('table')

in html table is represented by the tag <table>

we can see how many tables were found by checking the

length of the tables list

len(tables)

output

26

we can search for the table name if it is in the table

but this option might not always work

for index,table in enumerate(tables):

 if ("10 most densely populated countries" in

str(table)):

 table_index = index

print(table_index)

print(tables[table_index].prettify())

population_data = pd.DataFrame(columns=["Rank",

"Country", "Population", "Area", "Density"])

for row in tables[table_index].tbody.find_all("tr"):

 col = row.find_all("td")

 if (col != []):

 rank = col[0].text

 country = col[1].text

 population = col[2].text.strip()

 area = col[3].text.strip()

 density = col[4].text.strip()

 population_data =

population_data.append({"Rank":rank, "Country":country,

"Population":population, "Area":area,

"Density":density}, ignore_index=True)

population_data

HTTP Requests in Python
Requests is a python Library that allows you to send HTTP/1.1
requests easily

import requests

import os

from PIL import Image

from IPython.display import IFrame

making a GET request and storing the response in 'r'

url='https://www.ibm.com/'

r=requests.get(url)

viewing the HTTP status code

r.status_code

view the request headers

print(r.request.headers)

print("request body:", r.request.body)

view the `HTTP` response header using the attribute

`headers`. This returns a python dictionary of `HTTP`

response headers

header=r.headers

print(r.headers)

obtain the date the request was sent using the key

`Date`

header['date']

Content-Type` indicates the type of data

header['Content-Type']

check encoding

r.encoding

As the `Content-Type` is `text/html` we can use the

attribute `text` to display the `HTML` in the body. We

can review the first 100 characters

r.text[0:100]

url='https://gitlab.com/ibm/skills-

network/courses/placeholder101/-/raw/master/labs/module%

201/images/IDSNlogo.png'

r2=requests.get(url)

print(r2.headers)

r2.headers['Content-Type']

specifying the path for the image

path=os.path.join(os.getcwd(),'image.png')

path

we use the attribute `content` then save it using the

`open` function and write `method`

with open(path,'wb') as f:

 f.write(r.content)

view the image

Image.open(path)

Get Request with URL Parameters

performing get request to the specified url

url_get='http://httpbin.org/get'

storing url parameters in payload dict variable.

payload={"name":"Joseph","ID":"123"}

passing the dictionary `payload` to the `params`

parameter of the `get()` function

r=requests.get(url_get,params=payload)

print out the `URL` and see the name and values

r.url

view the response as text

print(r.text)

r.headers['Content-Type']

As the content `'Content-Type'` is in the `JSON`

format we can use the method `json()` , it returns a

Python `dict`

r.json()

The key `args` had the name and values

r.json()['args']

POST Request with URL Parameters

url_post='http://httpbin.org/post'

r_post=requests.post(url_post,data=payload)

print("POST request URL:",r_post.url)

print("GET request URL:",r.url)

print("POST request body:",r_post.request.body)

print("GET request body:",r.request.body)

r_post.json()['form']

Data Engineering Process
There are several steps in Data Engineering process.

 Extract  Data extraction is getting data from multiple
sources. Ex. Data extraction from a website using Web
scraping or gathering information from the data that are
stored in different formats(JSON, CSV, XLSX etc.).

 Transform  Tarnsforming the data means removing the
data that we don't need for further analysis and
converting the data in the format that all the data from the
multiple sources is in the same format.

 Load  Loading the data inside a data warehouse. Data
warehouse essentially contains large volumes of data that
are accessed to gather insights

Project: extracting stock data with
finance library
For this project, you will assume the role of a Data Scientist /
Data Analyst working for a new startup investment firm that
helps customers invest their money in stocks. Your job is to
extract financial data like historical share price and quarterly
revenue reportings from various sources using Python
libraries and webscraping on popular stocks. After collecting
this data you will visualize it in a dashboard to identify
patterns or trends. The stocks we will work with are Tesla,
Amazon, AMD, and GameStop

A company's [stock] share is a piece of the company; more
precisely:

A stock (also known as equity) is a security that represents
the ownership of a fraction of a [corporation]. This entitles the
owner of the stock to a proportion of the corporation's
[assets] _and profits equal to how much stock they own. Units
of stock are called "shares."

An investor can buy a stock and sell it later. If the stock price
increases, the investor profits, If it decreases, the investor
with incur a loss. Determining the stock price is complex; it
depends on the number of outstanding shares, the size of the
company's future profits, and much more. People trade stocks
throughout the day. The stock ticker is a report of the price of
a certain stock, updated continuously throughout the trading
session by the various stock market exchanges. In this lab,
you will use the y-finance API to obtain the stock ticker and
extract information about the stock. You will then be asked
questions about your results

Code: Apple stocks analysis
1 import the yfinance library

2 Using the Ticker module we can create an object that will
allow us to access functions to extract data. To do this we
need to provide the ticker symbol for the stock, here the
company is Apple and the ticker symbol is AAPL .
Now we can access functions and variables to extract the

type of data we need. You can view them and what they
represent here

3 Using the attribute info we can extract information about
the stock as a Python dictionary.

4 We can get the 'country' using the key country

5 A share is the single smallest part of a company's stock
that you can buy, the prices of these shares fluctuate over
time. Using the history() method we can get the share price
of the stock over a certain period of time. Using the period
parameter we can set how far back from the present to get
data. The options for period are 1 day (1d), 5d, 1 month (1mo)
, 3mo, 6mo, 1 year (1y), 2y, 5y, 10y, ytd, and max

6 Extracting Dividends : Dividends are the distribution of a
companys profits to shareholders. In this case they are
defined as an amount of money returned per share an
investor owns. Using the variable dividends we can get a
dataframe of the data. The period of the data is given by the
period defined in the 'history` function

``
import yfinance as yf
import pandas as pd

apple = yf.Ticker("AAPL")

apple_info=apple.info
apple_info

apple_info['country']

apple_share_price_data = apple.history(period="max")

The format that the data is returned in is a
Pandas DataFrame. With the Date as the
index the share Open , High , Low , Close ,
Volume , and Stock Splits are given for each
day

apple_share_price_data.head()

apple_share_price_data.reset_index(inplace=True)

We can reset the index of the DataFrame
with the reset_index function. We also set
the inplace paramter to True so the change
takes place to the DataFrame itself.

apple_share_price_data.plot(x="Date", y="Open")

We can plot the Open price against the Date

print (apple.dividends)

output: Name: Dividends, Length: 70,
dtype: float64

apple.dividends.plot()
``

Code: AMD Advanced Micro
Devices) stocks analysis
``
import yfinance as yf
import pandas as pd

amd = yf.Ticker("AMD")

amd_info=amd.info

amd_country=amd_info['country']
print(amd_country)
amd_sector=amd_info['sector']
print(amd_sector)
amd_share_price_data = amd.history(period="max")

amd_share_price_data.reset_index(inplace=True)

volcolumn=amd_share_price_data'Volume'
volmax=volcolumn.max()
print('maximum value of volume columns is:', volmax)

``

Project: extracting stock data with
webscrabing
Code: Extracting stock data from a
webpage

import pandas as pd

import requests

from bs4 import BeautifulSoup

import urllib.request

url = 'https://finance.yahoo.com/quote/AMZN/history?

period1=1451606400&period2=1612137600&interval=1mo&filte

r=history&frequency=1mo&includeAdjustedClose=true&cm_mmc

=Email_Newsletter-_-Developer_Ed%2BTech-_-WW_WW-_-

SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-

WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-

WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-

WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ'

html_data = requests.get(url).text

soup = BeautifulSoup(html_data, 'html5lib')

title=soup.title

amazon_table = soup.find('table')

amazon_data = pd.DataFrame(columns=["Date", "Open",

"High", "Low", "Close", "Volume"])

for row in amazon_table.find("tbody").find_all('tr'):

 col = row.find_all("td")

 date =col[0].string

 Open =col[1].string

 high =col[2].string

 low =col[3].string

 close =col[4].string

 adj_close =col[5].string

 volume =col[6].string

 amazon_data = amazon_data.append({"Date":date,

"Open":Open, "High":high, "Low":low, "Close":close, "Adj

Close":adj_close, "Volume":volume}, ignore_index=True)

 print (amazon_data)

amazon_data.head()

opendf=amazon_data.loc[(amazon_data["Date"]=="Jun 01,

2019")]

print('Open is:',opendf[['Open']])

Project: extracting stock data
with webscrabing and
finance API
1 we define the function make_graph . You don't have to know
how the function works, you should only care about the
inputs. It takes a dataframe with stock data (dataframe must
contain Date and Close columns), a dataframe with revenue
data (dataframe must contain Date and Revenue columns),
and the name of the stock

Tesla Stock Data Extraction and
Cleaning

import yfinance as yf

import pandas as pd

import requests

from bs4 import BeautifulSoup

import plotly.graph_objects as go

from plotly.subplots import make_subplots

def make_graph(stock_data, revenue_data, stock):

 fig = make_subplots(rows=2, cols=1,

shared_xaxes=True, subplot_titles=("Historical Share

Price", "Historical Revenue"), vertical_spacing = .3)

fig.add_trace(go.Scatter(x=pd.to_datetime(stock_data.Dat

e, infer_datetime_format=True),

y=stock_data.Close.astype("float"), name="Share Price"),

row=1, col=1)

fig.add_trace(go.Scatter(x=pd.to_datetime(revenue_data.D

ate, infer_datetime_format=True),

y=revenue_data.Revenue.astype("float"), name="Revenue"),

row=2, col=1)

 fig.update_xaxes(title_text="Date", row=1, col=1)

 fig.update_xaxes(title_text="Date", row=2, col=1)

 fig.update_yaxes(title_text="Price ($US)", row=1,

col=1)

 fig.update_yaxes(title_text="Revenue ($US

Millions)", row=2, col=1)

 fig.update_layout(showlegend=False,

 height=900,

 title=stock,

 xaxis_rangeslider_visible=True)

 fig.show()

tesla = yf.Ticker("TSLA")

tesla_data = tesla.history(period="max")

tesla_data.reset_index(inplace=True)

tesla_data.head()

url =

'https://www.macrotrends.net/stocks/charts/TSLA/tesla/re

venue?cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-

WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-

WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-

WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-

WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ'

html_data = requests.get(url).text

soup = BeautifulSoup(html_data, 'html5lib')

tesla_revenue = pd.DataFrame(columns=["Date",

"Revenue"])

tesla_table = soup.find_all('table')[1]

for row in tesla_table.find("tbody").find_all('tr'):

 col = row.find_all("td")

 date =col[0].string

 revenue =col[1].string

 revenue = col[1].text.replace("$", "").replace(",",

"")

 tesla_revenue = tesla_revenue.append({"Date":date,

"Revenue":revenue}, ignore_index=True)

tesla_revenue.dropna(inplace=True)

tesla_revenue = tesla_revenue[tesla_revenue['Revenue']

!= ""]

print (tesla_revenue.tail())

make_graph(tesla_data, tesla_revenue, 'Tesla')

GameStop Stock Data Extraction and
Cleaning

import yfinance as yf

import pandas as pd

import requests

from bs4 import BeautifulSoup

import plotly.graph_objects as go

from plotly.subplots import make_subplots

def make_graph(stock_data, revenue_data, stock):

 fig = make_subplots(rows=2, cols=1,

shared_xaxes=True, subplot_titles=("Historical Share

Price", "Historical Revenue"), vertical_spacing = .3)

fig.add_trace(go.Scatter(x=pd.to_datetime(stock_data.Dat

e, infer_datetime_format=True),

y=stock_data.Close.astype("float"), name="Share Price"),

row=1, col=1)

fig.add_trace(go.Scatter(x=pd.to_datetime(revenue_data.D

ate, infer_datetime_format=True),

y=revenue_data.Revenue.astype("float"), name="Revenue"),

row=2, col=1)

 fig.update_xaxes(title_text="Date", row=1, col=1)

 fig.update_xaxes(title_text="Date", row=2, col=1)

 fig.update_yaxes(title_text="Price ($US)", row=1,

col=1)

 fig.update_yaxes(title_text="Revenue ($US

Millions)", row=2, col=1)

 fig.update_layout(showlegend=False,

 height=900,

 title=stock,

 xaxis_rangeslider_visible=True)

 fig.show()

gamestop = yf.Ticker("GME")

gme_data = gamestop.history(period="max")

gme_data.reset_index(inplace=True)

url =

'https://www.macrotrends.net/stocks/charts/GME/gamestop/

revenue?cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-

WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-

WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-

WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-

WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-

PY0220EN-SkillsNetwork-

23455606&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M1

2345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=0

00026UJ'

html_data = requests.get(url).text

soup = BeautifulSoup(html_data, 'html5lib')

gme_revenue = pd.DataFrame(columns=["Date", "Revenue"])

gme_table = soup.find_all('table')[1]

for row in gme_table.find("tbody").find_all('tr'):

 col = row.find_all("td")

 date =col[0].string

 revenue =col[1].string

 revenue = col[1].text.replace("$", "").replace(",",

"")

 gme_revenue = gme_revenue.append({"Date":date,

"Revenue":revenue}, ignore_index=True)

gme_revenue.dropna(inplace=True)

gme_revenue = gme_revenue[gme_revenue['Revenue'] != ""]

print (gme_revenue.tail())

make_graph(gme_data, gme_revenue, 'GameStop')

Python with SQL
Connecting to databases
The ibm_db provides a variety of useful Python functions for
accessing and manipulating data in an IBM® data server
database, including functions for connecting to a database,
preparing and issuing SQL statements, fetching rows from
result sets, calling stored procedures, committing and rolling
back transactions, handling errors, and retrieving metadata.

import ibm_db

#Replace the placeholder values with your actual IBM Db2

hostname, username, and password:

dsn_hostname = "dashdb-txn-sbox-yp-lon02-15.services.eu-

gb.bluemix.net"

dsn_uid = "tcc02603"

dsn_pwd = "43360z^w0llrh6rm"

dsn_driver = "DATABASE=BLUDB;HOSTNAME=dashdb-txn-sbox-

yp-lon02-15.services.eu-

gb.bluemix.net;PORT=50000;PROTOCOL=TCPIP;UID=tcc02603;PW

D=43360z^w0llrh6rm;"

dsn_database = "BLUDB"

dsn_port = "50000"

dsn_protocol = "TCPIP"

#Create the DB2 database connection

dsn = (

 "DRIVER={0};"

 "DATABASE={1};"

 "HOSTNAME={2};"

 "PORT={3};"

 "PROTOCOL={4};"

 "UID={5};"

 "PWD={6};").format(dsn_driver, dsn_database,

dsn_hostname, dsn_port, dsn_protocol, dsn_uid, dsn_pwd)

#print the connection string to check correct values are

specified

print(dsn)

#establish the connection to the database

try:

 conn = ibm_db.connect(dsn, "", "")

 print ("Connected to database: ", dsn_database, "as

user: ", dsn_uid, "on host: ", dsn_hostname)

except:

 print ("Unable to connect: ", ibm_db.conn_errormsg()

)

#Retrieve Metadata for the Database Server

server = ibm_db.server_info(conn)

print ("DBMS_NAME: ", server.DBMS_NAME)

print ("DBMS_VER: ", server.DBMS_VER)

print ("DB_NAME: ", server.DB_NAME)

#Retrieve Metadata for the Database Client / Driver

client = ibm_db.client_info(conn)

print ("DRIVER_NAME: ", client.DRIVER_NAME)

print ("DRIVER_VER: ", client.DRIVER_VER)

print ("DATA_SOURCE_NAME: ",

client.DATA_SOURCE_NAME)

print ("DRIVER_ODBC_VER: ", client.DRIVER_ODBC_VER)

print ("ODBC_VER: ", client.ODBC_VER)

print ("ODBC_SQL_CONFORMANCE: ",

client.ODBC_SQL_CONFORMANCE)

print ("APPL_CODEPAGE: ", client.APPL_CODEPAGE)

print ("CONN_CODEPAGE: ", client.CONN_CODEPAGE)

ibm_db.close(conn)

Creating tables and queries

connect to the database as the code above shows

#Lets first drop the table INSTRUCTOR in case it exists

from a previous attempt

dropQuery = "drop table INSTRUCTOR"

#Now execute the drop statment

dropStmt = ibm_db.exec_immediate(conn, dropQuery)

#Construct the Create Table DDL statement

createQuery = "create table INSTRUCTOR(ID INTEGER

PRIMARY KEY NOT NULL, FNAME VARCHAR(20), LNAME

VARCHAR(20), CITY VARCHAR(20), CCODE CHAR(2))"

createStmt = ibm_db.exec_immediate(conn,createQuery)

Insert data into the table

#Construct the query - replace ... with the insert

statement

insertQuery = "insert into INSTRUCTOR values (1, 'Rav',

'Ahuja', 'TORONTO', 'CA')"

insertStmt = ibm_db.exec_immediate(conn, insertQuery)

insertQuery2 = "insert into INSTRUCTOR values (2,

'Raul', 'Chong', 'Markham', 'CA'), (3, 'Hima',

'Vasudevan', 'Chicago', 'US')"

insertStmt2 = ibm_db.exec_immediate(conn, insertQuery2)

Query data in the table

#Construct the query that retrieves all rows from the

INSTRUCTOR table

selectQuery = "select * from INSTRUCTOR"

#Execute the statement

selectStmt = ibm_db.exec_immediate(conn, selectQuery)

#Fetch the Dictionary (for the first row only)

ibm_db.fetch_both(selectStmt)

#Fetch the rest of the rows and print the ID and FNAME

for those rows

while ibm_db.fetch_row(selectStmt) != False:

 print (" ID:", ibm_db.result(selectStmt, 0), "

FNAME:", ibm_db.result(selectStmt, "FNAME"))

write and execute an update statement that changes the

Rav's CITY to MOOSETOWN

updateQuery = "update INSTRUCTOR set CITY='MOOSETOWN'

where FNAME='Rav'"

updateStmt = ibm_db.exec_immediate(conn, updateQuery))

Retrieve data into Pandas

retrieve the contents of the INSTRUCTOR table into a

Pandas dataframe

import pandas

import ibm_db_dbi

#connection for pandas

pconn = ibm_db_dbi.Connection(conn)

#query statement to retrieve all rows in INSTRUCTOR

table

selectQuery = "select * from INSTRUCTOR"

#retrieve the query results into a pandas dataframe

pdf = pandas.read_sql(selectQuery, pconn)

#print just the LNAME for first row in the pandas data

frame

pdf.LNAME[0]

#print the entire data frame

pdf

#use the shape method to see how many rows and columns

are in the dataframe

pdf.shape

ibm_db.close(conn)

Accessing Databases with SQL
Magic
To communicate with SQL Databases from within a
JupyterLab notebook, we can use the SQL "magic" provided
by the [ipython-sql] extension. "Magic" is JupyterLab's term
for special commands that start with "%". Below, we'll use the
[load_ext] magic to load the ipython-sql extension

!pip install sqlalchemy==1.3.9

!pip install ibm_db_sa

%load_ext sql

Enter your Db2 credentials in the connection string

below

Recall you created Service Credentials in Part III of

the first lab of the course in Week 1

i.e. from the uri field in the Service Credentials

copy everything after db2:// (but remove the double

quote at the end)

for example, if your credentials are as in the

screenshot above, you would write:

%sql ibm_db_sa://my-username:my-password@dashdb-txn-

sbox-yp-dal09-03.services.dal.bluemix.net:50000/BLUDB

Note the ibm_db_sa:// prefix instead of db2://

This is because JupyterLab's ipython-sql extension

uses sqlalchemy (a python SQL toolkit)

which in turn uses IBM's sqlalchemy dialect: ibm_db_sa

%sql ibm_db_sa://tcc02603:43360z%5Ew0llrh6rm@dashdb-txn-

sbox-yp-lon02-15.services.eu-gb.bluemix.net:50000/BLUDB

#For convenience, we can use %%sql (two %'s instead of

one) at the top of a cell to indicate we want the entire

cell to be treated as SQL. Let's use this to create a

table and fill it with some test data for experimenting

%%sql

CREATE TABLE INTERNATIONAL_STUDENT_TEST_SCORES (

 country VARCHAR(50),

 first_name VARCHAR(50),

 last_name VARCHAR(50),

 test_score INT

);

INSERT INTO INTERNATIONAL_STUDENT_TEST_SCORES (country,

first_name, last_name, test_score)

VALUES

('United States', 'Marshall', 'Bernadot', 54),

('Ghana', 'Celinda', 'Malkin', 51),

('Ukraine', 'Guillermo', 'Furze', 53),

('Greece', 'Aharon', 'Tunnow', 48),

('Russia', 'Bail', 'Goodwin', 46),

('Poland', 'Cole', 'Winteringham', 49),

('Sweden', 'Emlyn', 'Erricker', 55),

('Russia', 'Cathee', 'Sivewright', 49),

('China', 'Barny', 'Ingerson', 57),

('Uganda', 'Sharla', 'Papaccio', 55),

('China', 'Stella', 'Youens', 51),

('Poland', 'Julio', 'Buesden', 48),

('United States', 'Tiffie', 'Cosely', 58),

('Poland', 'Auroora', 'Stiffell', 45),

('China', 'Clarita', 'Huet', 52),

('Poland', 'Shannon', 'Goulden', 45),

('Philippines', 'Emylee', 'Privost', 50),

('France', 'Madelina', 'Burk', 49),

('China', 'Saunderson', 'Root', 58),

('Indonesia', 'Bo', 'Waring', 55),

('China', 'Hollis', 'Domotor', 45),

('Russia', 'Robbie', 'Collip', 46),

('Philippines', 'Davon', 'Donisi', 46),

('China', 'Cristabel', 'Radeliffe', 48),

('China', 'Wallis', 'Bartleet', 58),

('Moldova', 'Arleen', 'Stailey', 38),

('Ireland', 'Mendel', 'Grumble', 58),

('China', 'Sallyann', 'Exley', 51),

('Mexico', 'Kain', 'Swaite', 46),

('Indonesia', 'Alonso', 'Bulteel', 45),

('Armenia', 'Anatol', 'Tankus', 51),

('Indonesia', 'Coralyn', 'Dawkins', 48),

('China', 'Deanne', 'Edwinson', 45),

('China', 'Georgiana', 'Epple', 51),

('Portugal', 'Bartlet', 'Breese', 56),

('Azerbaijan', 'Idalina', 'Lukash', 50),

('France', 'Livvie', 'Flory', 54),

('Malaysia', 'Nonie', 'Borit', 48),

('Indonesia', 'Clio', 'Mugg', 47),

('Brazil', 'Westley', 'Measor', 48),

('Philippines', 'Katrinka', 'Sibbert', 51),

('Poland', 'Valentia', 'Mounch', 50),

('Norway', 'Sheilah', 'Hedditch', 53),

('Papua New Guinea', 'Itch', 'Jubb', 50),

('Latvia', 'Stesha', 'Garnson', 53),

('Canada', 'Cristionna', 'Wadmore', 46),

('China', 'Lianna', 'Gatward', 43),

('Guatemala', 'Tanney', 'Vials', 48),

('France', 'Alma', 'Zavittieri', 44),

('China', 'Alvira', 'Tamas', 50),

('United States', 'Shanon', 'Peres', 45),

('Sweden', 'Maisey', 'Lynas', 53),

('Indonesia', 'Kip', 'Hothersall', 46),

('China', 'Cash', 'Landis', 48),

('Panama', 'Kennith', 'Digance', 45),

('China', 'Ulberto', 'Riggeard', 48),

('Switzerland', 'Judy', 'Gilligan', 49),

('Philippines', 'Tod', 'Trevaskus', 52),

('Brazil', 'Herold', 'Heggs', 44),

('Latvia', 'Verney', 'Note', 50),

('Poland', 'Temp', 'Ribey', 50),

('China', 'Conroy', 'Egdal', 48),

('Japan', 'Gabie', 'Alessandone', 47),

('Ukraine', 'Devlen', 'Chaperlin', 54),

('France', 'Babbette', 'Turner', 51),

('Czech Republic', 'Virgil', 'Scotney', 52),

('Tajikistan', 'Zorina', 'Bedow', 49),

('China', 'Aidan', 'Rudeyeard', 50),

('Ireland', 'Saunder', 'MacLice', 48),

('France', 'Waly', 'Brunstan', 53),

('China', 'Gisele', 'Enns', 52),

('Peru', 'Mina', 'Winchester', 48),

('Japan', 'Torie', 'MacShirrie', 50),

('Russia', 'Benjamen', 'Kenford', 51),

('China', 'Etan', 'Burn', 53),

('Russia', 'Merralee', 'Chaperlin', 38),

('Indonesia', 'Lanny', 'Malam', 49),

('Canada', 'Wilhelm', 'Deeprose', 54),

('Czech Republic', 'Lari', 'Hillhouse', 48),

('China', 'Ossie', 'Woodley', 52),

('Macedonia', 'April', 'Tyer', 50),

('Vietnam', 'Madelon', 'Dansey', 53),

('Ukraine', 'Korella', 'McNamee', 52),

('Jamaica', 'Linnea', 'Cannam', 43),

('China', 'Mart', 'Coling', 52),

('Indonesia', 'Marna', 'Causbey', 47),

('China', 'Berni', 'Daintier', 55),

('Poland', 'Cynthia', 'Hassell', 49),

('Canada', 'Carma', 'Schule', 49),

('Indonesia', 'Malia', 'Blight', 48),

('China', 'Paulo', 'Seivertsen', 47),

('Niger', 'Kaylee', 'Hearley', 54),

('Japan', 'Maure', 'Jandak', 46),

('Argentina', 'Foss', 'Feavers', 45),

('Venezuela', 'Ron', 'Leggitt', 60),

('Russia', 'Flint', 'Gokes', 40),

('China', 'Linet', 'Conelly', 52),

('Philippines', 'Nikolas', 'Birtwell', 57),

('Australia', 'Eduard', 'Leipelt', 53)

##You can use python variables in your SQL statements by

adding a ":" prefix to your python variable names.

#For example, if I have a python variable `country` with

a value of `"Canada"`, I can use this variable in a SQL

query to find all the rows of students from Canada

country = "Canada"

%sql select * from INTERNATIONAL_STUDENT_TEST_SCORES

where country = :country

You can use the normal python assignment syntax to

assign the results of your queries to python variables.

[]

For example, I have a SQL query to retrieve the

distribution of test scores (i.e. how many students got

each score). I can assign the result of this query to

the variable `test_score_distribution` using the `=`

operator

test_score_distribution = %sql SELECT test_score as

"Test Score", count(*) as "Frequency" from

INTERNATIONAL_STUDENT_TEST_SCORES GROUP BY test_score;

test_score_distribution

You can easily convert a SQL query result to a pandas

dataframe using the `DataFrame()` method. Dataframe

objects are much more versatile than SQL query result

objects. For example, we can easily graph our test score

distribution after converting to a dataframe

dataframe = test_score_distribution.DataFrame()

%matplotlib inline

uncomment the following line if you get an module

error saying seaborn not found

!pip install seaborn

import seaborn

plot = seaborn.barplot(x='Test Score',y='Frequency',

data=dataframe)

Selected Socioeconomic Indicators
in Chicago
The city of Chicago released a dataset of socioeconomic data
to the Chicago City Portal. This dataset contains a selection
of six socioeconomic indicators of public health significance
and a “hardship index,” for each Chicago community area, for
the years 2008  2012.

Scores on the hardship index can range from 1 to 100, with a
higher index number representing a greater level of hardship.

A detailed description of the dataset can be found on the city
of Chicago's website, but to summarize, the dataset has the
following variables:

Community Area Number (ca  Used to uniquely identify
each row of the dataset
Community Area Name (community_area_name  The name
of the region in the city of Chicago
Percent of Housing Crowded
(percent_of_housing_crowded  Percent of occupied
housing units with more than one person per room
Percent Households Below Poverty
(percent_households_below_poverty  Percent of
households living below the federal poverty line
Percent Aged 16 Unemployed
(percent_aged_16_unemployed  Percent of persons over
the age of 16 years that are unemployed

https://data.cityofchicago.org/Health-Human-Services/Census-Data-Selected-socioeconomic-indicators-in-C/kn9c-c2s2?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkDB0201ENSkillsNetwork20127838-2021-01-01

Percent Aged 25 without High School Diploma
(percent_aged_25_without_high_school_diploma  Percent
of persons over the age of 25 years without a high school
education
Percent Aged Under 18 or Over 64Percent of population
under 18 or over 64 years of age
(percent_aged_under_18_or_over_64): (ie. dependents)
Per Capita Income (per_capita_income_  Community
Area per capita income is estimated as the sum of tract-
level aggragate incomes divided by the total population
Hardship Index (hardship_index  Score that incorporates
each of the six selected socioeconomic indicators

%load_ext sql

%sql ibm_db_sa://tcc02603:43360z%5Ew0llrh6rm@dashdb-txn-

sbox-yp-lon02-15.services.eu-gb.bluemix.net:50000/BLUDB

In many cases the dataset to be analyzed is available

as a .CSV (comma separated values) file, perhaps on the

internet. To analyze the data using SQL, it first needs

to be stored in the database.

#We will first read the dataset source .CSV from the

internet into pandas dataframe[]

#Then we need to create a table in our Db2 database to

store the dataset. The PERSIST command in SQL "magic"

simplifies the process of table creation and writing the

data from a `pandas` dataframe into the table

import pandas

chicago_socioeconomic_data =

pandas.read_csv('https://data.cityofchicago.org/resource

/jcxq-k9xf.csv')

%sql PERSIST chicago_socioeconomic_data

#How many rows are in the dataset

%sql SELECT COUNT(*) FROM chicago_socioeconomic_data;

#How many community areas in Chicago have a hardship

index greater than 50.0?

%sql SELECT COUNT(*) FROM chicago_socioeconomic_data

WHERE hardship_index > 50.0;

#What is the maximum value of hardship index in this

dataset?

%sql SELECT MAX(hardship_index) FROM

chicago_socioeconomic_data;

#We can use the result of the last query to as an input

to this query:

%sql SELECT community_area_name FROM

chicago_socioeconomic_data where hardship_index=98.0

#or another option:

%sql SELECT community_area_name FROM

chicago_socioeconomic_data ORDER BY hardship_index DESC

NULLS LAST FETCH FIRST ROW ONLY;

#or you can use a sub-query to determine the max

hardship index:

%sql select community_area_name from

chicago_socioeconomic_data where hardship_index = (

select max(hardship_index) from

chicago_socioeconomic_data)

Which Chicago community areas have per-capita incomes

greater than $60,000?

%sql SELECT community_area_name FROM

chicago_socioeconomic_data WHERE per_capita_income_ >

60000;

Create a scatter plot using the variables

`per_capita_income_` and `hardship_index`. Explain the

correlation between the two variables

if the import command gives ModuleNotFoundError: No

module named 'seaborn'

then uncomment the following line i.e. delete the # to

install the seaborn package

!pip install seaborn

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

income_vs_hardship = %sql SELECT per_capita_income_,

hardship_index FROM chicago_socioeconomic_data;

plot =

sns.jointplot(x='per_capita_income_',y='hardship_index',

data=income_vs_hardship.DataFrame())

You can access a database from a language like Python
by using the appropriate API. Examples include ibm_db
API for IBM DB2, psycopg2 for ProstgreSQL, and dblib API
for SQL Server.
DBAPI is Python's standard API for accessing relational
databases. It allows you to write a single program that
works with multiple kinds of relational databases instead
of writing a separate program for each one.
The DB_API connect constructor creates a connection to
the database and returns a Connection Object, which is
then used by the various connection methods.
The connection methods are:
The cursor() method, which returns a new cursor object
using the connection.
The commit() method, which is used to commit any
pending transaction to the database.
The rollback() method, which causes the database to roll-
back to the start of any pending transaction. The close()
method, which is used to close a database connection.
You can use SQL Magic commands to execute queries
more easily from Jupyter Notebooks. Magic commands
have the general format %sql select * from tablename.

Cell magics start with a double %% (percent) sign and
apply to the entire cell. Line magics start with a single %
(percent) sign and apply to a particular line in a cell.

Chicago Public Schools - Progress
Report Cards (20112012

import pandas

import ibm_db_dbi

%load_ext sql

Enter the connection string for your Db2 on Cloud

database instance below

%sql ibm_db_sa://my-username:my-password@my-

hostname:my-port/my-db-name

%sql ibm_db_sa://nsk05922:834d52l077cnkd%2Bd@dashdb-txn-

sbox-yp-dal09-08.services.dal.bluemix.net:50000/BLUDB

type in your query to retrieve list of all tables in

the database for your db2 schema (username)

#In Db2 the system catalog table called SYSCAT.TABLES

contains the table metadata

%sql select TABSCHEMA, TABNAME, CREATE_TIME from

SYSCAT.TABLES where TABSCHEMA=nsk05922

#or, just query for a specifc table that you want to

verify exists in the database

%sql select * from SYSCAT.TABLES where TABNAME =

'SCHOOLS'

type in your query to retrieve the number of columns

in the SCHOOLS table

%sql select COLNAME, TYPENAME, LENGTH from

SYSCAT.COLUMNS where TABNAME = 'SCHOOLS'

#How many Elementary Schools are in the dataset?

%sql select count(*) from SCHOOLS where "Elementary,

Middle, or High School" = 'ES'

#What is the highest Safety Score?

%sql select MAX(Safety_Score) AS MAX_SAFETY_SCORE from

SCHOOLS

#Which schools have highest Safety Score?

%sql select Name_of_School, Safety_Score from SCHOOLS

where

Safety_Score= (select MAX(Safety_Score) from SCHOOLS)

#What are the top 10 schools with the highest "Average

Student Attendance"?

%sql select Name_of_School, Average_Student_Attendance

from SCHOOLS

order by Average_Student_Attendance desc nulls last

limit 10

#Retrieve the list of 5 Schools with the lowest Average

Student Attendance sorted in ascending order based on

attendance

%sql SELECT Name_of_School, Average_Student_Attendance

 from SCHOOLS

 order by Average_Student_Attendance

 fetch first 5 rows only

#Now remove the '%' sign from the above result set for

Average Student Attendance column

%sql SELECT Name_of_School,

REPLACE(Average_Student_Attendance, '%', '')

 from SCHOOLS

 order by Average_Student_Attendance

 fetch first 5 rows only

Which Schools have Average Student Attendance lower

than 70%?

%sql SELECT Name_of_School, Average_Student_Attendance

 from SCHOOLS

 where CAST (REPLACE(Average_Student_Attendance,

'%', '') AS DOUBLE) < 70

 order by Average_Student_Attendance

#or

%sql SELECT Name_of_School, Average_Student_Attendance

 from SCHOOLS

 where DECIMAL (REPLACE(Average_Student_Attendance,

'%', '')) < 70

 order by Average_Student_Attendance

#Get the total College Enrollment for each Community

Area

%sql select Community_Area_Name, sum(College_Enrollment)

AS TOTAL_ENROLLMENT

 from SCHOOLS

 group by Community_Area_Name

#Get the 5 Community Areas with the least total College

Enrollment sorted in ascending order

%sql select Community_Area_Name, sum(College_Enrollment)

AS TOTAL_ENROLLMENT

 from SCHOOLS

 group by Community_Area_Name

 order by TOTAL_ENROLLMENT asc

 fetch first 5 rows only

#Get the hardship index for the community area which has

College Enrollment of 4368

%%sql

select hardship_index

 from chicago_socioeconomic_data CD, schools CPS

 where CD.ca = CPS.community_area_number

 and college_enrollment = 4368

#Get the hardship index for the community area which has

the highest value for College Enrollment

%sql select ca, community_area_name, hardship_index from

chicago_socioeconomic_data

 where ca in

 (select community_area_number from schools order by

college_enrollment desc limit 1)

import pandas

import ibm_db_dbi

%load_ext sql

%sql ibm_db_sa://nsk05922:834d52l077cnkdA%2Bd@dashdb-

txn-sbox-yp-dal09-

08.services.dal.bluemix.net:50000/BLUDB

Find the total number of crimes recorded in the

CRIME table.

%sql SELECT count(*) FROM CHICAGO_CRIME_DATA

List community areas with per capita income less

than 11000

%sql SELECT COMMUNITY_AREA_NAME FROM CENSUS_DATA WHERE

PER_CAPITA_INCOME < 11000

List all case numbers for crimes involving minors?

(children are not considered minors for the purposes of

crime analysis)

%sql SELECT CASE_NUMBER FROM CHICAGO_CRIME_DATA WHERE

DESCRIPTION LIKE '%MINOR'

What kinds of crimes were recorded at schools?

%sql SELECT DISTINCT(PRIMARY_TYPE), DESCRIPTION,

LOCATION_DESCRIPTION FROM CHICAGO_CRIME_DATA WHERE

LOCATION_DESCRIPTION LIKE 'SCHOOL%' OR

LOCATION_DESCRIPTION LIKE '%SCHOOL'

List the average safety score for all types of

schools.

%sql SELECT avg(SAFETY_SCORE) FROM

CHICAGO_PUBLIC_SCHOOLS

List 5 community areas with highest % of

households below poverty line

%sql SELECT COMMUNITY_AREA_NAME FROM CENSUS_DATA ORDER

BY PERCENT_HOUSEHOLDS_BELOW_POVERTY DESC NULLS LAST

LIMIT 5

Which community area is most crime prone?

%sql SELECT COMMUNITY_AREA_NUMBER,

COUNT(COMMUNITY_AREA_NUMBER) AS mostcrimeprone FROM

CHICAGO_CRIME_DATA GROUP BY COMMUNITY_AREA_NUMBER ORDER

BY mostcrimeprone DESC LIMIT 5

Use a sub-query to determine the Community Area

Name with most number of crimes?

%sql SELECT COMMUNITY_AREA_NAME FROM CENSUS_DATA

WHERE COMMUNITY_AREA_NUMBER =

(SELECT COMMUNITY_AREA_NUMBER FROM CHICAGO_CRIME_DATA

GROUP BY COMMUNITY_AREA_NUMBER ORDER BY COUNT(*) DESC

LIMIT 1)

Adding headers to a dataset and
playing with the values

Import pandas library

import pandas as pd

import numpy as np

Read the online file by the URL provides above, and

assign it to variable "df"

other_path = "https://cf-courses-data.s3.us.cloud-

object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DA0101EN-SkillsNetwork/labs/Data%20files/auto.csv"

df = pd.read_csv(other_path, header=None)

create headers list

headers = ["symboling","normalized-losses","make","fuel-

type","aspiration", "num-of-doors","body-style",

 "drive-wheels","engine-location","wheel-base",

"length","width","height","curb-weight","engine-type",

 "num-of-cylinders", "engine-size","fuel-

system","bore","stroke","compression-

ratio","horsepower",

 "peak-rpm","city-mpg","highway-mpg","price"]

Replacing columns with the wanted headers.

df.columns = headers

df.head(10)

We need to replace the "?" symbol with NaN so the

dropna() can remove the missing values

df1=df.replace('?',np.NaN)

We can drop missing values along the column "price" as

follows:

df=df1.dropna(subset=["price"], axis=0)

df.head(20)

Print the name of the columns of the dataframe

print(df.columns)

Save the dataframe **df** as **automobile.csv** to

your local machine, you may use the syntax below, where

`index = False` means the row names will not be written

df.to_csv("automobile.csv", index=False)

check the data type of data frame "df" by .dtypes

print(df.dtypes

#If we would like to get a statistical summary of each

column e.g. count, column mean value, column standard

deviation, etc., we use the describe method (describe

only numeric typed columns)

df.describe()

to list stats about also object typed columns

df.describe(include = "all")

".describe()" to the columns 'length' and

'compression-ratio'

df[['length','compression-ratio']].describe()

A concise summary of your DataFrame

df.info()

cast each element in the column **"price"** to an

integer

df["price"] = df["price"].astype("int")

Data wrangling
Data wrangling is the process of converting data from the
initial format to a format that may be better for analysis

Fuel consumption (L/100k) rate for the
diesel car

import pandas as pd

import matplotlib.pylab as plt

import numpy as np

filename = "https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DA0101EN-SkillsNetwork/labs/Data%20files/auto.csv"

headers = ["symboling","normalized-losses","make","fuel-

type","aspiration", "num-of-doors","body-style",

 "drive-wheels","engine-location","wheel-base",

"length","width","height","curb-weight","engine-type",

 "num-of-cylinders", "engine-size","fuel-

system","bore","stroke","compression-

ratio","horsepower",

 "peak-rpm","city-mpg","highway-mpg","price"]

df = pd.read_csv(filename, names = headers)

df.head()

Convert "?" to NaN (Not a Number)

replace "?" to NaN

df.replace("?", np.nan, inplace = True)

df.head(5)

The missing values are converted by default. We use

the following functions to identify these missing

values. There are two methods to detect missing data:

1. **.isnull()**

2. **.notnull()**

The output is a boolean value indicating whether

the value that is passed into the argument is in fact

missing data.

missing_data = df.isnull()

missing_data.head(5)

Count missing values in each column

In the body of the for loop the method

".value_counts()" counts the number of "True" values

for column in missing_data.columns.values.tolist():

 print(column)

 print (missing_data[column].value_counts())

 print("")

Deal with missing data

How to deal with missing data?

Drop data

 a. Drop the whole row

 b. Drop the whole column

Replace data

 a. Replace it by mean

 b. Replace it by frequency

 c. Replace it based on other functions

Whole columns should be dropped only if most entries

in the column are empty. In our dataset, none of the

columns are empty enough to drop entirely. We have some

freedom in choosing which method to replace data;

however, some methods may seem more reasonable than

others. We will apply each method to many different

columns

Replace by mean

- "normalized-losses": 41 missing data, replace them

with mean

- "stroke": 4 missing data, replace them with mean

- "bore": 4 missing data, replace them with mean

- "horsepower": 2 missing data, replace them with mean

- "peak-rpm": 2 missing data, replace them with mean

Replace by frequency

- "num-of-doors": 2 missing data, replace them with

"four".

 - Reason: 84% sedans is four doors. Since four

doors is most frequent, it is most likely to occur

Drop the whole row

- "price": 4 missing data, simply delete the whole row

 - Reason: price is what we want to predict. Any

data entry without price data cannot be used for

prediction; therefore any row now without price data is

not useful to us

Calculate the mean value for the "normalized-

losses" column

avg_norm_loss = df["normalized-

losses"].astype("float").mean(axis=0)

print("Average of normalized-losses:", avg_norm_loss)

Replace "NaN" with mean value in "normalized-

losses" column

df["normalized-losses"].replace(np.nan, avg_norm_loss,

inplace=True)

Calculate the mean value for the "bore" column

avg_bore=df['bore'].astype('float').mean(axis=0)

print("Average of bore:", avg_bore)

df["bore"].replace(np.nan, avg_bore, inplace=True)

avg_stroke=df["stroke"].astype("float").mean(axis=0)

print("Average of stroke:", avg_stroke)

df["stroke"].replace(np.nan, avg_stroke, inplace=True)

Calculate the mean value for the "horsepower"

column

avg_horsepower =

df['horsepower'].astype('float').mean(axis=0)

print("Average horsepower:", avg_horsepower)

df['horsepower'].replace(np.nan, avg_horsepower,

inplace=True)

Calculate the mean value for "peak-rpm" column

avg_peakrpm=df['peak-rpm'].astype('float').mean(axis=0)

print("Average peak rpm:", avg_peakrpm)

df['peak-rpm'].replace(np.nan, avg_peakrpm,

inplace=True)

To see which values are present in a particular

column, we can use the ".value_counts()" method

df['num-of-doors'].value_counts()

We can also use the ".idxmax()" method to

calculate the most common type automatically

df['num-of-doors'].value_counts().idxmax()

#replace the missing 'num-of-doors' values by the most

frequent

df["num-of-doors"].replace(np.nan, "four", inplace=True)

Finally, let's drop all rows that do not have price

data

simply drop whole row with NaN in "price" column

df.dropna(subset=["price"], axis=0, inplace=True)

reset index, because we droped two rows

df.reset_index(drop=True, inplace=True)

Data Formatting
The last step in data cleaning is checking and making sure
that all data is in the correct format (int, float, text or other).
In Pandas, we use:
.dtype() to check the data type
.astype() to change the data type

Let's list the data types for each column

df.dtypes

Convert data types to proper format

df[["bore", "stroke"]] = df[["bore",

"stroke"]].astype("float")

df[["normalized-losses"]] = df[["normalized-

losses"]].astype("int")

df[["price"]] = df[["price"]].astype("float")

df[["peak-rpm"]] = df[["peak-rpm"]].astype("float")

Data Standardization
Data is usually collected from different agencies in different
formats. Data standardization is also a term for a particular
type of data normalization where we subtract the mean and
divide by the standard deviation.)

Standardization is the process of transforming data into a
common format, allowing the researcher to make the
meaningful comparison.

Transform mpg to L/100km

In our dataset, the fuel consumption columns "city-mpg" and
"highway-mpg" are represented by mpg (miles per gallon)
unit. Assume we are developing an application in a country
that accepts the fuel consumption with L/100km standard.

We will need to apply data transformation to transform mpg
into L/100km.

The formula for unit conversion is:

L/100km = 235 / mpg

We can do many mathematical operations directly in Pandas.

Convert mpg to L/100km by mathematical operation (235

divided by mpg)

df['city-L/100km'] = 235/df["city-mpg"]

rename column name from "city-mpg" to "city-L/100km"

df.rename(columns={'"city-mpg"':'city-L/100km'},

inplace=True)

check your transformed data

df.head()

Data Normalization
Normalization is the process of transforming values of several
variables into a similar range. Typical normalizations include
scaling the variable so the variable average is 0, scaling the
variable so the variance is 1, or scaling the variable so the
variable values range from 0 to 1.

Example

To demonstrate normalization, let's say we want to scale the
columns "length", "width" and "height".

Target: would like to normalize those variables so their value
ranges from 0 to 1

Approach: replace original value by (original value)/(maximum
value)

replace (original value) by (original value)/(maximum

value)

df['length'] = df['length']/df['length'].max()

df['width'] = df['width']/df['width'].max()

Data Binning
Binning is a process of transforming continuous numerical
variables into discrete categorical 'bins' for grouped analysis.

In our dataset, "horsepower" is a real valued variable ranging
from 48 to 288 and it has 57 unique values. What if we only
care about the price difference between cars with high
horsepower, medium horsepower, and little horsepower (3
types)? Can we rearrange them into three ‘bins' to simplify
analysis?

We will use the pandas method 'cut' to segment the
'horsepower' column into 3 bins.

Convert data to correct format

df["horsepower"]=df["horsepower"].astype(int, copy=True)

plot the histogram of horsepower to see what the

distribution of horsepower

%matplotlib inline

import matplotlib as plt

from matplotlib import pyplot

plt.pyplot.hist(df["horsepower"])

set x/y labels and plot title

plt.pyplot.xlabel("horsepower")

plt.pyplot.ylabel("count")

plt.pyplot.title("horsepower bins")

We would like 3 bins of equal size bandwidth so we use

numpy's `linspace(start_value, end_value,

numbers_generated` function.

Since we want to include the minimum value of

horsepower, we want to set start_value =

min(df["horsepower"]).

Since we want to include the maximum value of

horsepower, we want to set end_value =

max(df["horsepower"]).

Since we are building 3 bins of equal length, there

should be 4 dividers, so numbers_generated = 4.

We build a bin array with a minimum value to a maximum

value by using the bandwidth calculated above. The

values will determine when one bin ends and another

begins

bins = np.linspace(min(df["horsepower"]),

max(df["horsepower"]), 4)

group_names = ['Low', 'Medium', 'High']

apply the function "cut" to determine what each value

of `df['horsepower']` belongs to

df['horsepower-binned'] = pd.cut(df['horsepower'], bins,

labels=group_names, include_lowest=True)

df[['horsepower','horsepower-binned']].head(20)

the number of vehicles in each bin

df["horsepower-binned"].value_counts()

plot the distribution of each bin

%matplotlib inline

import matplotlib as plt

from matplotlib import pyplot

pyplot.bar(group_names, df["horsepower-

binned"].value_counts())

set x/y labels and plot title

plt.pyplot.xlabel("horsepower")

plt.pyplot.ylabel("count")

plt.pyplot.title("horsepower bins")

Complete Code

import pandas as pd

import matplotlib.pylab as plt

import numpy as np

filename = "https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DA0101EN-SkillsNetwork/labs/Data%20files/auto.csv"

headers = ["symboling","normalized-losses","make","fuel-

type","aspiration", "num-of-doors","body-style",

 "drive-wheels","engine-location","wheel-base",

"length","width","height","curb-weight","engine-type",

 "num-of-cylinders", "engine-size","fuel-

system","bore","stroke","compression-

ratio","horsepower",

 "peak-rpm","city-mpg","highway-mpg","price"]

df = pd.read_csv(filename, names = headers)

df.head()

Convert "?" to NaN (Not a Number)

replace "?" to NaN

df.replace("?", np.nan, inplace = True)

df.head(5)

The missing values are converted by default. We use

the following functions to identify these missing

values. There are two methods to detect missing data:

1. **.isnull()**

2. **.notnull()**

The output is a boolean value indicating whether

the value that is passed into the argument is in fact

missing data.

missing_data = df.isnull()

missing_data.head(5)

Count missing values in each column

In the body of the for loop the method

".value_counts()" counts the number of "True" values

for column in missing_data.columns.values.tolist():

 print(column)

 print (missing_data[column].value_counts())

 print("")

Deal with missing data

How to deal with missing data?

Drop data

 ### a. Drop the whole row

 ### b. Drop the whole column

Replace data

 ### a. Replace it by mean

 ### b. Replace it by frequency

 ### c. Replace it based on other functions

Whole columns should be dropped only if most entries

in the column are empty. In our dataset, none of the

columns are empty enough to drop entirely. We have some

freedom in choosing which method to replace data;

however, some methods may seem more reasonable than

others. We will apply each method to many different

columns

Replace by mean

"normalized-losses": 41 missing data, replace them

with mean

"stroke": 4 missing data, replace them with mean

"bore": 4 missing data, replace them with mean

"horsepower": 2 missing data, replace them with mean

"peak-rpm": 2 missing data, replace them with mean

Replace by frequency

"num-of-doors": 2 missing data, replace them with

"four".

Reason: 84% sedans is four doors. Since four doors

is most frequent, it is most likely to occur

Drop the whole row

"price": 4 missing data, simply delete the whole row

Reason: price is what we want to predict. Any data

entry without price data cannot be used for prediction;

therefore any row now without price data is not useful

to us

Calculate the mean value for the "normalized-

losses" column

avg_norm_loss = df["normalized-

losses"].astype("float").mean(axis=0)

print("Average of normalized-losses:", avg_norm_loss)

Replace "NaN" with mean value in "normalized-

losses" column

df["normalized-losses"].replace(np.nan, avg_norm_loss,

inplace=True)

Calculate the mean value for the "bore" column

avg_bore=df['bore'].astype('float').mean(axis=0)

print("Average of bore:", avg_bore)

df["bore"].replace(np.nan, avg_bore, inplace=True)

avg_stroke=df["stroke"].astype("float").mean(axis=0)

print("Average of stroke:", avg_stroke)

df["stroke"].replace(np.nan, avg_stroke, inplace=True)

Calculate the mean value for the "horsepower"

column

avg_horsepower =

df['horsepower'].astype('float').mean(axis=0)

print("Average horsepower:", avg_horsepower)

df['horsepower'].replace(np.nan, avg_horsepower,

inplace=True)

Calculate the mean value for "peak-rpm" column

avg_peakrpm=df['peak-rpm'].astype('float').mean(axis=0)

print("Average peak rpm:", avg_peakrpm)

df['peak-rpm'].replace(np.nan, avg_peakrpm,

inplace=True)

To see which values are present in a particular

column, we can use the ".value_counts()" method

df['num-of-doors'].value_counts()

We can also use the ".idxmax()" method to

calculate the most common type automatically

df['num-of-doors'].value_counts().idxmax()

#replace the missing 'num-of-doors' values by the most

frequent

df["num-of-doors"].replace(np.nan, "four", inplace=True)

Finally, let's drop all rows that do not have price

data

simply drop whole row with NaN in "price" column

df.dropna(subset=["price"], axis=0, inplace=True)

reset index, because we droped two rows

df.reset_index(drop=True, inplace=True)

Let's list the data types for each column

df.dtypes

Convert data types to proper format

df[["bore", "stroke"]] = df[["bore",

"stroke"]].astype("float")

df[["normalized-losses"]] = df[["normalized-

losses"]].astype("int")

df[["price"]] = df[["price"]].astype("float")

df[["peak-rpm"]] = df[["peak-rpm"]].astype("float")

Convert mpg to L/100km by mathematical operation (235

divided by mpg)

df['city-L/100km'] = 235/df["city-mpg"]

rename column name from "city-mpg" to "city-L/100km"

df.rename(columns={'"city-mpg"':'city-L/100km'},

inplace=True)

check your transformed data

df.head()

replace (original value) by (original value)/(maximum

value)

df['length'] = df['length']/df['length'].max()

df['width'] = df['width']/df['width'].max()

Convert data to correct format

df["horsepower"]=df["horsepower"].astype(int, copy=True)

plot the histogram of horsepower to see what the

distribution of horsepower

%matplotlib inline

import matplotlib as plt

from matplotlib import pyplot

plt.pyplot.hist(df["horsepower"])

set x/y labels and plot title

plt.pyplot.xlabel("horsepower")

plt.pyplot.ylabel("count")

plt.pyplot.title("horsepower bins")

bins = np.linspace(min(df["horsepower"]),

max(df["horsepower"]), 4)

group_names = ['Low', 'Medium', 'High']

apply the function "cut" to determine what each value

of `df['horsepower']` belongs to

df['horsepower-binned'] = pd.cut(df['horsepower'], bins,

labels=group_names, include_lowest=True)

df[['horsepower','horsepower-binned']].head(20)

the number of vehicles in each bin

df["horsepower-binned"].value_counts()

plot the distribution of each bin

%matplotlib inline

import matplotlib as plt

from matplotlib import pyplot

pyplot.bar(group_names, df["horsepower-

binned"].value_counts())

Bins Visualization with Histogram

plt.pyplot.hist(df["horsepower"], bins = 3)

set x/y labels and plot title

plt.pyplot.xlabel("horsepower")

plt.pyplot.ylabel("count")

plt.pyplot.title("horsepower bins")

What is an indicator variable?

An indicator variable (or dummy variable) is a numerical
variable used to label categories. They are called 'dummies'
because the numbers themselves don't have inherent
meaning.

Why we use indicator variables?

We use indicator variables so we can use categorical variables
for regression analysis in the later modules.

Example

We see the column "fuel-type" has two unique values: "gas"
or "diesel". Regression doesn't understand words, only
numbers. To use this attribute in regression analysis, we
convert "fuel-type" to indicator variables.

We will use pandas' method 'get_dummies' to assign
numerical values to different categories of fuel type

df.columns

Get the indicator variables and assign it to data

frame "dummy_variable_1

dummy_variable_1 = pd.get_dummies(df["fuel-type"])

dummy_variable_1.head()

Change the column names for clarity

dummy_variable_1.rename(columns={'gas':'fuel-type-gas',

'diesel':'fuel-type-diesel'}, inplace=True)

dummy_variable_1.head()

merge data frame "df" and "dummy_variable_1"

df = pd.concat([df, dummy_variable_1], axis=1)

drop original column "fuel-type" from "df"

df.drop("fuel-type", axis = 1, inplace=True)

df.head()

df.to_csv('clean_df.csv')

Code Updated

import pandas as pd

import matplotlib.pylab as plt

import numpy as np

filename = "https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DA0101EN-SkillsNetwork/labs/Data%20files/auto.csv"

headers = ["symboling","normalized-losses","make","fuel-

type","aspiration", "num-of-doors","body-style",

 "drive-wheels","engine-location","wheel-base",

"length","width","height","curb-weight","engine-type",

 "num-of-cylinders", "engine-size","fuel-

system","bore","stroke","compression-

ratio","horsepower",

 "peak-rpm","city-mpg","highway-mpg","price"]

df = pd.read_csv(filename, names = headers)

df.head()

Convert "?" to NaN (Not a Number)

replace "?" to NaN

df.replace("?", np.nan, inplace = True)

df.head(5)

The missing values are converted by default. We use

the following functions to identify these missing

values. There are two methods to detect missing data:

1. **.isnull()**

2. **.notnull()**

The output is a boolean value indicating whether

the value that is passed into the argument is in fact

missing data.

missing_data = df.isnull()

missing_data.head(5)

Count missing values in each column

In the body of the for loop the method

".value_counts()" counts the number of "True" values

for column in missing_data.columns.values.tolist():

 print(column)

 print (missing_data[column].value_counts())

 print("")

Deal with missing data

How to deal with missing data?

Drop data

 ### a. Drop the whole row

 ### b. Drop the whole column

Replace data

 ### a. Replace it by mean

 ### b. Replace it by frequency

 ### c. Replace it based on other functions

Whole columns should be dropped only if most entries

in the column are empty. In our dataset, none of the

columns are empty enough to drop entirely. We have some

freedom in choosing which method to replace data;

however, some methods may seem more reasonable than

others. We will apply each method to many different

columns

Replace by mean

"normalized-losses": 41 missing data, replace them

with mean

"stroke": 4 missing data, replace them with mean

"bore": 4 missing data, replace them with mean

"horsepower": 2 missing data, replace them with mean

"peak-rpm": 2 missing data, replace them with mean

Replace by frequency

"num-of-doors": 2 missing data, replace them with

"four".

Reason: 84% sedans is four doors. Since four doors

is most frequent, it is most likely to occur

Drop the whole row

"price": 4 missing data, simply delete the whole row

Reason: price is what we want to predict. Any data

entry without price data cannot be used for prediction;

therefore any row now without price data is not useful

to us

Calculate the mean value for the "normalized-

losses" column

avg_norm_loss = df["normalized-

losses"].astype("float").mean(axis=0)

print("Average of normalized-losses:", avg_norm_loss)

Replace "NaN" with mean value in "normalized-

losses" column

df["normalized-losses"].replace(np.nan, avg_norm_loss,

inplace=True)

Calculate the mean value for the "bore" column

avg_bore=df['bore'].astype('float').mean(axis=0)

print("Average of bore:", avg_bore)

df["bore"].replace(np.nan, avg_bore, inplace=True)

avg_stroke=df["stroke"].astype("float").mean(axis=0)

print("Average of stroke:", avg_stroke)

df["stroke"].replace(np.nan, avg_stroke, inplace=True)

Calculate the mean value for the "horsepower"

column

avg_horsepower =

df['horsepower'].astype('float').mean(axis=0)

print("Average horsepower:", avg_horsepower)

df['horsepower'].replace(np.nan, avg_horsepower,

inplace=True)

Calculate the mean value for "peak-rpm" column

avg_peakrpm=df['peak-rpm'].astype('float').mean(axis=0)

print("Average peak rpm:", avg_peakrpm)

df['peak-rpm'].replace(np.nan, avg_peakrpm,

inplace=True)

To see which values are present in a particular

column, we can use the ".value_counts()" method

df['num-of-doors'].value_counts()

We can also use the ".idxmax()" method to

calculate the most common type automatically

df['num-of-doors'].value_counts().idxmax()

#replace the missing 'num-of-doors' values by the most

frequent

df["num-of-doors"].replace(np.nan, "four", inplace=True)

Finally, let's drop all rows that do not have price

data

simply drop whole row with NaN in "price" column

df.dropna(subset=["price"], axis=0, inplace=True)

reset index, because we droped two rows

df.reset_index(drop=True, inplace=True)

Let's list the data types for each column

df.dtypes

Convert data types to proper format

df[["bore", "stroke"]] = df[["bore",

"stroke"]].astype("float")

df[["normalized-losses"]] = df[["normalized-

losses"]].astype("int")

df[["price"]] = df[["price"]].astype("float")

df[["peak-rpm"]] = df[["peak-rpm"]].astype("float")

Convert mpg to L/100km by mathematical operation (235

divided by mpg)

df['city-L/100km'] = 235/df["city-mpg"]

rename column name from "city-mpg" to "city-L/100km"

df.rename(columns={'"city-mpg"':'city-L/100km'},

inplace=True)

check your transformed data

df.head()

replace (original value) by (original value)/(maximum

value)

df['length'] = df['length']/df['length'].max()

df['width'] = df['width']/df['width'].max()

Convert data to correct format

df["horsepower"]=df["horsepower"].astype(int, copy=True)

plot the histogram of horsepower to see what the

distribution of horsepower

%matplotlib inline

import matplotlib as plt

from matplotlib import pyplot

plt.pyplot.hist(df["horsepower"])

set x/y labels and plot title

plt.pyplot.xlabel("horsepower")

plt.pyplot.ylabel("count")

plt.pyplot.title("horsepower bins")

bins = np.linspace(min(df["horsepower"]),

max(df["horsepower"]), 4)

group_names = ['Low', 'Medium', 'High']

apply the function "cut" to determine what each value

of `df['horsepower']` belongs to

df['horsepower-binned'] = pd.cut(df['horsepower'], bins,

labels=group_names, include_lowest=True)

df[['horsepower','horsepower-binned']].head(20)

the number of vehicles in each bin

df["horsepower-binned"].value_counts()

plot the distribution of each bin

%matplotlib inline

import matplotlib as plt

from matplotlib import pyplot

pyplot.bar(group_names, df["horsepower-

binned"].value_counts())

Bins Visualization with Histogram

plt.pyplot.hist(df["horsepower"], bins = 3)

set x/y labels and plot title

plt.pyplot.xlabel("horsepower")

plt.pyplot.ylabel("count")

plt.pyplot.title("horsepower bins")

df.columns

Get the indicator variables and assign it to data

frame "dummy_variable_1

dummy_variable_1 = pd.get_dummies(df["fuel-type"])

dummy_variable_1.head()

Change the column names for clarity

dummy_variable_1.rename(columns={'gas':'fuel-type-gas',

'diesel':'fuel-type-diesel'}, inplace=True)

dummy_variable_1.head()

merge data frame "df" and "dummy_variable_1"

df = pd.concat([df, dummy_variable_1], axis=1)

drop original column "fuel-type" from "df"

df.drop("fuel-type", axis = 1, inplace=True)

df.head()

df.to_csv('clean_df.csv')

Exploratory Data Analysis
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

path='https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DA0101EN-

SkillsNetwork/labs/Data%20files/automobileEDA.csv'

df = pd.read_csv(path)

df.head()

we can calculate the correlation between variables of

type "int64" or "float64" using the method "corr

df.corr()

The correlation between the following columns: bore,

stroke, compression-ratio, and horsepower

df[['bore','stroke','compression-

ratio','horsepower']].corr()

Continuous numerical variables are variables that may

contain any value within some range. They can be of type

"int64" or "float64". A great way to visualize these

variables is by using scatterplots with fitted lines

In order to start understanding the (linear)

relationship between an individual variable and the

price, we can use "regplot" which plots the scatterplot

plus the fitted regression line for the data.

Positive Linear Relationship

Let's find the scatterplot of "engine-size" and

"price"

Engine size as potential predictor variable of price

sns.regplot(x="engine-size", y="price", data=df)

plt.ylim(0,)

As the engine-size goes up, the price goes up: this

indicates a positive direct correlation between these

two variables. Engine size seems like a pretty good

predictor of price since the regression line is almost a

perfect diagonal line

We can examine the correlation between 'engine-size'

and 'price' and see that it's approximately 0.87.

df[["engine-size", "price"]].corr()

Highway mpg is a potential predictor variable of

price. Let's find the scatterplot of "highway-mpg" and

"price".

sns.regplot(x="highway-mpg", y="price", data=df)

As highway-mpg goes up, the price goes down: this

indicates an inverse/negative relationship between these

two variables. Highway mpg could potentially be a

predictor of price.

df[['highway-mpg', 'price']].corr()

Weak Linear Relationship

Let's see if "peak-rpm" is a predictor variable of

"price".

sns.regplot(x="peak-rpm", y="price", data=df)

Peak rpm does not seem like a good predictor of the

price at all since the regression line is close to

horizontal. Also, the data points are very scattered and

far from the fitted line, showing lots of variability.

Therefore, it's not a reliable variable.

We can examine the correlation between 'peak-rpm'

and 'price' and see it's approximately -0.101616.

df[['peak-rpm','price']].corr()

Categorical Variables

These are variables that describe a 'characteristic'

of a data unit, and are selected from a small group of

categories. The categorical variables can have the type

"object" or "int64". A good way to visualize categorical

variables is by using boxplots

sns.boxplot(x="body-style", y="price", data=df)

We see that the distributions of price between the

different body-style categories have a significant

overlap, so body-style would not be a good predictor of

price. Let's examine engine "engine-location" and

"price":

sns.boxplot(x="engine-location", y="price", data=df)

Here we see that the distribution of price between

these two engine-location categories, front and rear,

are distinct enough to take engine-location as a

potential good predictor of price.

drive-wheels

sns.boxplot(x="drive-wheels", y="price", data=df)

Descriptive Statistical Analysis

Let's first take a look at the variables by utilizing

a description method.

The **describe** function automatically computes

basic statistics for all continuous variables. Any NaN

values are automatically skipped in these statistics.

This will show:

the count of that variable

the mean

the standard deviation (std)

the minimum value

the IQR (Interquartile Range: 25%, 50% and 75%)

the maximum value

We can apply the method "describe" as follows:

df.describe()

The default setting of "describe" skips variables of

type object. We can apply the method "describe" on the

variables of type 'object' as follows:

df.describe(include=['object'])

Value counts is a good way of understanding how many

units of each characteristic/variable we have. We can

apply the "value_counts" method on the column "drive-

wheels". Don’t forget the method "value_counts" only

works on pandas series, not pandas dataframes. As a

result, we only include one bracket `df['drive-

wheels']`, not two brackets `df[['drive-wheels']]`

df['drive-wheels'].value_counts()

We can convert the series to a dataframe as follows:

df['drive-wheels'].value_counts().to_frame()

Let's repeat the above steps but save the results to

the dataframe "drive_wheels_counts" and rename the

column 'drive-wheels' to 'value_counts'

drive_wheels_counts = df['drive-

wheels'].value_counts().to_frame()

drive_wheels_counts.rename(columns={'drive-wheels':

'value_counts'}, inplace=True)

drive_wheels_counts.index.name = 'drive-wheels'

drive_wheels_counts

Basics of Grouping
The "groupby" method groups data by different categories.
The data is grouped based on one or several variables, and
analysis is performed on the individual groups.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

path='https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DA0101EN-

SkillsNetwork/labs/Data%20files/automobileEDA.csv'

df = pd.read_csv(path)

df.head()

df['drive-wheels'].unique()

If we want to know, on average, which type of drive

wheel is most valuable, we can group "drive-wheels" and

then average them.

We can select the columns 'drive-wheels', 'body-

style' and 'price', then assign it to the variable

"df_group_one".

df_group_one = df[['drive-wheels','body-style','price']]

grouping results

df_group_one = df_group_one.groupby(['drive-

wheels'],as_index=False).mean()

df_group_one

You can also group by multiple variables. For

example, let's group by both 'drive-wheels' and 'body-

style'. This groups the dataframe by the unique

combination of 'drive-wheels' and 'body-style'. We can

store the results in the variable 'grouped_test1'.

grouping results

df_gptest = df[['drive-wheels','body-style','price']]

grouped_test1 = df_gptest.groupby(['drive-wheels','body-

style'],as_index=False).mean()

grouped_test1

A pivot table is like an Excel spreadsheet, with one

variable along the column and another along the row. We

can convert the dataframe to a pivot table using the

method "pivot" to create a pivot table from the groups

grouped_pivot = grouped_test1.pivot(index='drive-

wheels',columns='body-style')

grouped_pivot

fill missing values with 0

grouped_pivot = grouped_pivot.fillna(0)

grouped_pivot

Use the "groupby" function to find the average

"price" of each car based on "body-style".

df_gpprice = df[['body-style','price']]

grouped_price = df_gpprice.groupby(['body-

style'],as_index=False).mean()

grouped_price

Let's use a heat map to visualize the relationship

between Body Style vs Price

use the grouped results

plt.pcolor(grouped_pivot, cmap='RdBu')

plt.colorbar()

plt.show()

The heatmap plots the target variable (price)

proportional to colour with respect to the variables

'drive-wheel' and 'body-style' on the vertical and

horizontal axis, respectively. This allows us to

visualize how the price is related to 'drive-wheel' and

'body-style'.

The default labels convey no useful information to

us. Let's change that

fig, ax = plt.subplots()

im = ax.pcolor(grouped_pivot, cmap='RdBu')

#label names

row_labels = grouped_pivot.columns.levels[1]

col_labels = grouped_pivot.index

#move ticks and labels to the center

ax.set_xticks(np.arange(grouped_pivot.shape[1]) + 0.5,

minor=False)

ax.set_yticks(np.arange(grouped_pivot.shape[0]) + 0.5,

minor=False)

#insert labels

ax.set_xticklabels(row_labels, minor=False)

ax.set_yticklabels(col_labels, minor=False)

rotate label if too long

plt.xticks(rotation=90)

fig.colorbar(im)

plt.show()

5. Correlation and Causation
Correlation: a measure of the extent of interdependence
between variables.

Causation: the relationship between cause and effect
between two variables.

It is important to know the difference between these two.
Correlation does not imply causation. Determining correlation
is much simpler the determining causation as causation may
require independent experimentation.

Pearson Correlation

The Pearson Correlation measures the linear dependence
between two variables X and Y.

The resulting coefficient is a value between -1 and 1 inclusive,
where:

1 Perfect positive linear correlation.
0 No linear correlation, the two variables most likely do
not affect each other.
1 Perfect negative linear correlation.

Pearson Correlation is the default method of the function
"corr". Like before, we can calculate the Pearson Correlation
of the of the 'int64' or 'float64' variables. [df.corr()]

P-value

What is this P-value? The P-value is the probability value that
the correlation between these two variables is statistically
significant. Normally, we choose a significance level of 0.05,
which means that we are 95% confident that the correlation
between the variables is significant.

By convention, when the

p-value is << 0.001 we say there is strong evidence that
the correlation is significant.
the p-value is << 0.05 there is moderate evidence that
the correlation is significant.
the p-value is << 0.1 there is weak evidence that the
correlation is significant.
the p-value is >> 0.1 there is no evidence that the
correlation is significant.

We can obtain this information using "stats" module in the
"scipy" library

from scipy import stats

Let's calculate the Pearson Correlation Coefficient

and P-value of 'wheel-base' and 'price

pearson_coef, p_value = stats.pearsonr(df['wheel-base'],

df['price'])

print("The Pearson Correlation Coefficient is",

pearson_coef, " with a P-value of P =", p_value)

Let's calculate the Pearson Correlation Coefficient

and P-value of 'horsepower' and 'price

pearson_coef, p_value = stats.pearsonr(df['horsepower'],

df['price'])

print("The Pearson Correlation Coefficient is",

pearson_coef, " with a P-value of P = ", p_value)

ANOVA  Analysis of Variance
The Analysis of Variance (ANOVA is a statistical method used
to test whether there are significant differences between the
means of two or more groups. ANOVA returns two
parameters:

F-test score ANOVA assumes the means of all groups are the
same, calculates how much the actual means deviate from

the assumption, and reports it as the F-test score. A larger
score means there is a larger difference between the means.

P-value P-value tells how statistically significant our
calculated score value is.

If our price variable is strongly correlated with the variable we
are analyzing, we expect ANOVA to return a sizeable F-test
score and a small p-value

Since ANOVA analyzes the difference between different
groups of the same variable, the groupby function will come in
handy. Because the ANOVA algorithm averages the data
automatically, we do not need to take the average before
hand

To see if different types of 'drive-wheels' impact 'price', we
group the data.

grouped_test2=df_gptest[['drive-wheels',

'price']].groupby(['drive-wheels'])

grouped_test2.head(2)

We can obtain the values of the method group using

the method "get_group

grouped_test2.get_group('4wd')['price']

We can use the function 'f_oneway' in the module

'stats' to obtain the **F-test score** and **P-value**

f_val, p_val =

stats.f_oneway(grouped_test2.get_group('fwd')['price'],

grouped_test2.get_group('rwd')['price'],

grouped_test2.get_group('4wd')['price'])

print("ANOVA results: F=", f_val, ", P =", p_val)

We now have a better idea of what our data looks like and
which variables are important to take into account when
predicting the car price. We have narrowed it down to the
following variables:

Continuous numerical variables:

Length
Width
Curb-weight
Engine-size
Horsepower
City-mpg
Highway-mpg
Wheel-base
Bore

Categorical variables:

Drive-wheels

As we now move into building machine learning models to
automate our analysis, feeding the model with variables that
meaningfully affect our target variable will improve our
model's prediction performance.

Model Development
In data analytics, we often use Model Development to help us
predict future observations from the data we have.

A model will help us understand the exact relationship
between different variables and how these variables are used
to predict the result.

Simple Linear Regression is a method to help us understand
the relationship between two variables:

The predictor/independent variable (X
The response/dependent variable (that we want to
predict)(Y

The result of Linear Regression is a linear function that
predicts the response (dependent) variable as a function of
the predictor (independent) variable.

𝑌:𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑋:𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
Linear Function

𝑌ℎ𝑎𝑡=𝑎+𝑏𝑋

a refers to the intercept of the regression line, in other
words: the value of Y when X is 0
b refers to the slope of the regression line, in other words:
the value with which Y changes when X increases by 1
unit

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

path of data

path = 'https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DA0101EN-

SkillsNetwork/labs/Data%20files/automobileEDA.csv'

df = pd.read_csv(path)

df.head()

Create the linear regression object

lm = LinearRegression()

lm

How could "highway-mpg" help us predict car price?

For this example, we want to look at how highway-

mpg can help us predict car price. Using simple linear

regression, we will create a linear function with

"highway-mpg" as the predictor variable and the "price"

as the response variable

X = df[['highway-mpg']]

Y = df['price']

lm.fit(X,Y)

We can output a prediction:

Yhat=lm.predict(X)

Yhat[0:5]

The value of the intercept (a)

lm.intercept_

The value of the slope (b)

lm.coef_

As we saw above, we should get a final linear model

with the structure:

𝑌ℎ𝑎𝑡=𝑎+𝑏𝑋Yhat=a+bX

Plugging in the actual values we get:

Price = 38423.31 - 821.73 x **highway-mpg**

Multiple Linear Regression

What if we want to predict car price using more than one
variable?

If we want to use more variables in our model to predict car
price, we can use Multiple Linear Regression. Multiple Linear
Regression is very similar to Simple Linear Regression, but
this method is used to explain the relationship between one
continuous response (dependent) variable and two or more
predictor (independent) variables. Most of the real-world

regression models involve multiple predictors. We will
illustrate the structure by using four predictor variables, but
these results can generalize to any integer:

𝑌:𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
𝑋_1𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 1
𝑋_2𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 2
𝑋_3𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 3
𝑋_4𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 4

𝑎:𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
𝑏_1𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 1
𝑏_2𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 2
𝑏_3𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 3
𝑏_4𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 4

The equation is given by:

𝑌ℎ𝑎𝑡=𝑎+𝑏_1𝑋_1𝑏_2𝑋_2𝑏_3𝑋_3𝑏_4𝑋_4

From the previous section we know that other good
predictors of price could be:

Horsepower
Curb-weight
Engine-size
Highway-mpg
Let's develop a model using these variables as the
predictor variables.

Z = df[['horsepower', 'curb-weight', 'engine-size',

'highway-mpg']]

Fit the linear model using the four above-mentioned

variables.

lm.fit(Z, df['price'])

lm.intercept_

lm.coef_

Price = -15678.742628061467 + 52.65851272 x

horsepower + 4.69878948 x **curb-weight** +

81.95906216 x **engine-size** + 33.58258185 x **highway-

mpg**

How do we visualize a model for Multiple Linear Regression?
This gets a bit more complicated because you can't visualize
it with regression or residual plot.

One way to look at the fit of the model is by looking at the
distribution plot. We can look at the distribution of the fitted
values that result from the model and compare it to the
distribution of the actual values.

Y_hat = lm.predict(Z)

plt.figure(figsize=(width, height))

ax1 = sns.distplot(df['price'], hist=False, color="r",

label="Actual Value")

sns.distplot(Y_hat, hist=False, color="b", label="Fitted

Values" , ax=ax1)

plt.title('Actual vs Fitted Values for Price')

plt.xlabel('Price (in dollars)')

plt.ylabel('Proportion of Cars')

plt.show()

plt.close()

Model Evaluation Using Visualization
Now that we've developed some models, how do we evaluate
our models and choose the best one? One way to do this is by
using a visualization.

When it comes to simple linear regression, an excellent way to
visualize the fit of our model is by using regression plots.

This plot will show a combination of a scattered data points (a
scatterplot), as well as the fitted linear regression line going
through the data. This will give us a reasonable estimate of
the relationship between the two variables, the strength of
the correlation, as well as the direction (positive or negative
correlation).

Let's visualize highway-mpg as potential predictor variable of
price

import the visualization package: seaborn

import seaborn as sns

%matplotlib inline

width = 12

height = 10

plt.figure(figsize=(width, height))

sns.regplot(x="highway-mpg", y="price", data=df)

plt.ylim(0,)

We can see from this plot that price is negatively

correlated to highway-mpg since the regression slope is

negative.

One thing to keep in mind when looking at a

regression plot is to pay attention to how scattered the

data points are around the regression line. This will

give you a good indication of the variance of the data

and whether a linear model would be the best fit or not.

If the data is too far off from the line, this linear

model might not be the best model for this data.

Let's compare this plot to the regression plot of

"peak-rpm".

plt.figure(figsize=(width, height))

sns.regplot(x="peak-rpm", y="price", data=df)

plt.ylim(0,)

Residual Plot

A good way to visualize the variance of the data is to use a
residual plot.

What is a residual?

The difference between the observed value (y) and the
predicted value (Yhat) is called the residual (e). When we look
at a regression plot, the residual is the distance from the data
point to the fitted regression line.

So what is a residual plot?

A residual plot is a graph that shows the residuals on the
vertical y-axis and the independent variable on the horizontal
x-axis.

What do we pay attention to when looking at a residual plot?

We look at the spread of the residuals:

If the points in a residual plot are randomly spread out
around the x-axis, then a linear model is appropriate for
the data.

Why is that? Randomly spread out residuals means that the
variance is constant, and thus the linear model is a good fit
for this data.

width = 12

height = 10

plt.figure(figsize=(width, height))

sns.residplot(df['highway-mpg'], df['price'])

plt.show()

Polynomial Regression and Pipelines
Polynomial regression is a particular case of the general
linear regression model or multiple linear regression models.

We get non-linear relationships by squaring or setting higher-
order terms of the predictor variables.

There are different orders of polynomial regression:

Quadratic - 2nd Order

𝑌ℎ𝑎𝑡=𝑎+𝑏1𝑋+𝑏2𝑋2Yhat=a+b1X+b2X2

Cubic - 3rd Order

𝑌ℎ𝑎𝑡=𝑎+𝑏1𝑋+𝑏2𝑋2𝑏3𝑋3Yhat=a+b1X+b2X2+b3X3

Higher-Order:

𝑌=𝑎+𝑏1𝑋+𝑏2𝑋2𝑏3𝑋3....Y=a+b1X+b2X2+b3X3....

We saw earlier that a linear model did not provide the best fit
while using "highway-mpg" as the predictor variable. Let's see
if we can try fitting a polynomial model to the data instead.

We will use the following function to plot the data:

def PlotPolly(model, independent_variable,

dependent_variabble, Name):

 x_new = np.linspace(15, 55, 100)

 y_new = model(x_new)

 plt.plot(independent_variable, dependent_variabble,

'.', x_new, y_new, '-')

 plt.title('Polynomial Fit with Matplotlib for Price

~ Length')

 ax = plt.gca()

 ax.set_facecolor((0.898, 0.898, 0.898))

 fig = plt.gcf()

 plt.xlabel(Name)

 plt.ylabel('Price of Cars')

 plt.show()

 plt.close()

x = df['highway-mpg']

y = df['price']

Let's fit the polynomial using the function

polyfit, then use the function **poly1d** to display

the polynomial function.

Here we use a polynomial of the 3rd order (cubic)

f = np.polyfit(x, y, 3)

p = np.poly1d(f)

print(p)

plot the function

PlotPolly(p, x, y, 'highway-mpg')

np.polyfit(x, y, 3)

Polynomial Regression with more
than one predictor variable
The analytical expression for Multivariate Polynomial function
gets complicated. For example, the expression for a second-
order (degree=2 polynomial with two variables is given by:

𝑌ℎ𝑎𝑡=𝑎+𝑏_1𝑋_1𝑏_2𝑋_2𝑏_3𝑋_1𝑋_2𝑏_4𝑋_12𝑏_5𝑋_22Yhat=a+
b_1X_1+b_2X_2+b_3X_1X_2+b_4X_12+b_5X_22

We can perform a polynomial transform on multiple features.

from sklearn.preprocessing import PolynomialFeatures

We create a **PolynomialFeatures** object of degree

2

pr=PolynomialFeatures(degree=2)

pr

Z_pr=pr.fit_transform(Z)

In the original data, there are 201 samples and 4

features

Z.shape

After the transformation, there are 201 samples and

15 features

Z_pr.shape

Pipeline
Data Pipelines simplify the steps of processing the data. We
use the module Pipeline to create a pipeline. We also use
StandardScaler as a step in our pipeline

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

We create the pipeline by creating a list of tuples

including the name of the model or estimator and its

corresponding constructor.

Input=[('scale',StandardScaler()), ('polynomial',

PolynomialFeatures(include_bias=False)),

('model',LinearRegression())]

We input the list as an argument to the pipeline

constructor

pipe=Pipeline(Input)

pipe

First, we convert the data type Z to type float to

avoid conversion warnings that may appear as a result of

StandardScaler taking float inputs.

Then, we can normalize the data, perform a

transform and fit the model simultaneously

Z = Z.astype(float)

pipe.fit(Z,y)

Similarly, we can normalize the data, perform a

transform and produce a prediction simultaneously.

ypipe=pipe.predict(Z)

ypipe[0:4]

Measures for In-Sample Evaluation
When evaluating our models, not only do we want to visualize
the results, but we also want a quantitative measure to
determine how accurate the model is.

Two very important measures that are often used in Statistics
to determine the accuracy of a model are:

R^2 / R-squared
Mean Squared Error (MSE

R-squared

R squared, also known as the coefficient of determination, is a
measure to indicate how close the data is to the fitted
regression line.

The value of the R-squared is the percentage of variation of
the response variable (y) that is explained by a linear model.

Mean Squared Error (MSE

The Mean Squared Error measures the average of the squares
of errors. That is, the difference between actual value (y) and
the estimated value (ŷ).

Model 1: Simple Linear Regression

Let's import the function **mean_squared_error**

from the module **metrics**

from sklearn.metrics import mean_squared_error

from sklearn.metrics import r2_score

#highway_mpg_fit

lm.fit(X, Y)

Find the R^2

print('The R-square is: ', lm.score(X, Y))

The R-square is: 0.4965911884339176

We can say that ~49.659% of the variation of the

price is explained by this simple linear model

"horsepower_fit"

Let's calculate the MSE:

We can predict the output i.e., "yhat" using the

predict method, where X is the input variable

Yhat=lm.predict(X)

print('The output of the first four predicted value is:

', Yhat[0:4])

We can compare the predicted results with the

actual results

mse = mean_squared_error(df['price'], Yhat)

print('The mean square error of price and predicted

value is: ', mse)

Model 2: Multiple Linear Regression

Let's calculate the R^2

 fit the model

lm.fit(Z, df['price'])

Find the R^2

print('The R-square is: ', lm.score(Z, df['price']))

We can say that ~80.896 % of the variation of price

is explained by this multiple linear regression

"multi_fit".

Let's calculate the MSE.

We produce a prediction

Y_predict_multifit = lm.predict(Z)

We compare the predicted results with the actual

results

print('The mean square error of price and predicted

value using multifit is: ',

 mean_squared_error(df['price'],

Y_predict_multifit))

Model 3: Polynomial Fit

We apply the function to get the value of R^2

r_squared = r2_score(y, p(x))

print('The R-square value is: ', r_squared)

We can say that ~67.419 % of the variation of price

is explained by this polynomial fit.

mean_squared_error(df['price'], p(x))

Prediction and Decision Making
In the previous section, we trained the model using the
method fit. Now we will use the method predict to produce a
prediction. Lets import pyplot for plotting; we will also be
using some functions from numpy.

import matplotlib.pyplot as plt

import numpy as np

%matplotlib inline

Create a new input

new_input=np.arange(1, 100, 1).reshape(-1, 1)

lm.fit(X, Y)

lm

Produce a prediction

yhat=lm.predict(new_input)

yhat[0:5]

We can plot the data

plt.plot(new_input, yhat)

plt.show()

Decision Making: Determining a Good
Model Fit

Now that we have visualized the different models, and
generated the R-squared and MSE values for the fits, how do
we determine a good model fit?

What is a good R-squared value?

When comparing models, the model with the higher R
squared value is a better fit for the data.

What is a good MSE?

When comparing models, the model with the smallest MSE
value is a better fit for the data.

Let's take a look at the values for the different
models.

Simple Linear Regression: Using Highway-mpg as a Predictor
Variable of Price.

R-squared: 0.49659118843391759
MSE 3.16 10^7

Multiple Linear Regression: Using Horsepower, Curb-weight,
Engine-size, and Highway-mpg as Predictor Variables of
Price.

R-squared: 0.80896354913783497
MSE 1.2 10^7

Polynomial Fit: Using Highway-mpg as a Predictor Variable of
Price.

R-squared: 0.6741946663906514
MSE 2.05  10^7

Simple Linear Regression Model (SLR vs
Multiple Linear Regression Model (MLR

Usually, the more variables you have, the better your model is
at predicting, but this is not always true. Sometimes you may
not have enough data, you may run into numerical problems,
or many of the variables may not be useful and even act as
noise. As a result, you should always check the MSE and R^2.

In order to compare the results of the MLR vs SLR models, we
look at a combination of both the R-squared and MSE to make
the best conclusion about the fit of the model.

MSE The MSE of SLR is 3.1610^7 while MLR has an MSE
of 1.2 10^7. The MSE of MLR is much smaller.
R-squared In this case, we can also see that there is a big
difference between the R-squared of the SLR and the R
squared of the MLR. The R-squared for the SLR 0.497
is very small compared to the R-squared for the MLR
0.809.

This R-squared in combination with the MSE show that MLR
seems like the better model fit in this case compared to SLR.

Simple Linear Model (SLR vs. Polynomial
Fit

MSE We can see that Polynomial Fit brought down the
MSE, since this MSE is smaller than the one from the SLR.
R-squared The R-squared for the Polynomial Fit is larger
than the R-squared for the SLR, so the Polynomial Fit also
brought up the R-squared quite a bit.

Since the Polynomial Fit resulted in a lower MSE and a higher
R-squared, we can conclude that this was a better fit model
than the simple linear regression for predicting "price" with
"highway-mpg" as a predictor variable.

Multiple Linear Regression (MLR vs.
Polynomial Fit

MSE The MSE for the MLR is smaller than the MSE for the
Polynomial Fit.

R-squared The R-squared for the MLR is also much larger
than for the Polynomial Fit.

Conclusion
Comparing these three models, we conclude that the MLR
model is the best model to be able to predict price from our
dataset. This result makes sense since we have 27 variables
in total and we know that more than one of those variables
are potential predictors of the final car price.

Visualization
The Dataset: Immigration to Canada from
1980 to 2013

useful for many scientific computing in Python

import numpy as np

import pandas as pd

primary data structure library

df_can = pd.read_excel(

 'https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DV0101EN-SkillsNetwork/Data%20Files/Canada.xlsx',

 sheet_name='Canada by Citizenship',

 skiprows=range(20),

 skipfooter=2)

print('Data read into a pandas dataframe!')

df_can.head()

When analyzing a dataset, it's always a good idea to

start by getting basic information about your dataframe.

We can do this by using the `info()` method.

This method can be used to get a short summary of the

dataframe

df_can.info(verbose=False)

To get the list of column headers we can call upon

the data frame's `columns` instance variable

df_can.columns

Similarly, to get the list of indices we use the

`.index` instance variables

df_can.index

To get the index and columns as lists, we can use

the `tolist()` method.

df_can.columns.tolist()

df_can.index.tolist()

To view the dimensions of the dataframe, we use the

`shape` instance variable of it

df_can.shape

in pandas axis=0 represents rows (default) and axis=1

represents columns.

df_can.drop(['AREA','REG','DEV','Type','Coverage'],

axis=1, inplace=True)

df_can.head(2)

Let's rename the columns so that they make sense. We

can use `rename()` method by passing in a dictionary of

old and new names as follows

df_can.rename(columns={'OdName':'Country',

'AreaName':'Continent', 'RegName':'Region'},

inplace=True)

df_can.columns

We will also add a 'Total' column that sums up the

total immigrants by country over the entire period 1980

- 2013, as follows

df_can['Total'] = df_can.sum(axis=1)

We can check to see how many null objects we have in

the dataset as follows

df_can.isnull().sum()

Finally, let's view a quick summary of each column in

our dataframe using the `describe()` method.

df_can.describe()

There are two ways to filter on a column name:

Method 1: Quick and easy, but only works if the

column name does NOT have spaces or special characters.

df.column_name # returns series

Method 2: More robust, and can filter on multiple

columns

 df['column'] # returns series

 df[['column 1', 'column 2']] # returns dataframe

df_can.Country # returns a series

Let's try filtering on the list of countries

('Country') and the data for years: 1980 - 1985

df_can[['Country', 1980, 1981, 1982, 1983, 1984, 1985]]

returns a dataframe

notice that 'Country' is string, and the years are

integers.

There are main 2 ways to select rows:

df.loc[label] # filters by the labels of the

index/column

df.iloc[index] # filters by the positions of the

index/column

Before we proceed, notice that the default index of

the dataset is a numeric range from 0 to 194. This makes

it very difficult to do a query by a specific country.

For example to search for data on Japan, we need to know

the corresponding index value.

This can be fixed very easily by setting the

'Country' column as the index using `set_index()` method

df_can.set_index('Country', inplace=True)

tip: The opposite of set is reset. So to reset the

index, we can use df_can.reset_index()

df_can.head(3)

Example: Let's view the number of immigrants from

Japan (row 87) for the following scenarios: 1. The full

row data (all columns) 2. For year 2013 3. For years

1980 to 1985.

df_can.iloc[87]

df_can[df_can.index == 'Japan']

2. for year 2013

df_can.loc['Japan', 2013]

alternate method

year 2013 is the last column, with a positional index

of 36

df_can.iloc[87, 36]

3. for years 1980 to 1985

df_can.loc['Japan', [1980, 1981, 1982, 1983, 1984,

1984]]

Alternative Method

df_can.iloc[87, [3, 4, 5, 6, 7, 8]]

Column names that are integers (such as the years)

might introduce some confusion. For example, when we are

referencing the year 2013, one might confuse that when

the 2013th positional index.

To avoid this ambuigity, let's convert the column

names into strings: '1980' to '2013'.

df_can.columns = list(map(str, df_can.columns))

[print (type(x)) for x in df_can.columns.values] #<--

uncomment to check type of column headers

Since we converted the years to string, let's declare

a variable that will allow us to easily call upon the

full range of years

useful for plotting later on

years = list(map(str, range(1980, 2014)))

years

Filtering based on a criteria

To filter the dataframe based on a condition, we

simply pass the condition as a boolean vector.

For example, Let's filter the dataframe to show the

data on Asian countries (AreaName = Asia)

1. create the condition boolean series

condition = df_can['Continent'] == 'Asia'

print(condition)

2. pass this condition into the dataFrame

df_can[condition]

we can pass multiple criteria in the same line.

let's filter for AreaNAme = Asia and RegName =

Southern Asia

df_can[(df_can['Continent']=='Asia') &

(df_can['Region']=='Southern Asia')]

note: When using 'and' and 'or' operators, pandas

requires we use '&' and '|' instead of 'and' and 'or'

don't forget to enclose the two conditions in

parentheses

print('data dimensions:', df_can.shape)

print(df_can.columns)

df_can.head(2)

Matplotlib.Pyplot

One of the core aspects of Matplotlib is matplotlib.pyplot . It
is Matplotlib's scripting layer which we studied in details in the
videos about Matplotlib. Recall that it is a collection of
command style functions that make Matplotlib work like
MATLAB. Each pyplot function makes some change to a
figure: e.g., creates a figure, creates a plotting area in a figure,
plots some lines in a plotting area, decorates the plot with
labels, etc. In this lab, we will work with the scripting layer to
learn how to generate line plots. In future labs, we will get to
work with the Artist layer as well to experiment first hand how
it differs from the scripting layer.

Let's start by importing matplotlib and matplotlib.pyplot as
follows

we are using the inline backend

%matplotlib inline

import matplotlib as mpl

import matplotlib.pyplot as plt

print('Matplotlib version: ', mpl.__version__) # >=

2.0.0

print(plt.style.available)

mpl.style.use(['ggplot']) # optional: for ggplot-like

style

Plotting in _pandas

Fortunately, pandas has a built-in implementation of
Matplotlib that we can use. Plotting in pandas is as simple as
appending a .plot() method to a series or dataframe

passing in years 1980 - 2013 to exclude the 'total'

column

haiti = df_can.loc['Haiti', years]

haiti.head()

haiti.plot()

let's label the x and y axis using `plt.title()`,

`plt.ylabel()`, and `plt.xlabel()` as follows

haiti.index = haiti.index.map(int) # let's change the

index values of Haiti to type integer for plotting

haiti.plot(kind='line')

plt.title('Immigration from Haiti')

plt.ylabel('Number of immigrants')

plt.xlabel('Years')

plt.show() # need this line to show the updates made to

the figure

We can clearly notice how number of immigrants from

Haiti spiked up from 2010 as Canada stepped up its

efforts to accept refugees from Haiti. Let's annotate

this spike in the plot by using the `plt.text()` method

haiti.plot(kind='line')

plt.title('Immigration from Haiti')

plt.ylabel('Number of Immigrants')

plt.xlabel('Years')

annotate the 2010 Earthquake.

syntax: plt.text(x, y, label)

plt.text(2000, 6000, '2010 Earthquake') # see note below

plt.show()

Area Plots, Histograms, and Bar Plots

import numpy as np

useful for many scientific computing in Python

import pandas as pd

primary data structure library

df_can = pd.read_excel(

 'https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DV0101EN-SkillsNetwork/Data%20Files/Canada.xlsx',

 sheet_name='Canada by Citizenship',

 skiprows=range(20),

 skipfooter=2)

print('Data downloaded and read into a dataframe!')

print the dimensions of the dataframe

print(df_can.shape)

Clean up the dataset to remove columns that
are not informative to us for visualization (eg.
Type, AREA, REG.

df_can.drop(['AREA', 'REG', 'DEV', 'Type', 'Coverage'],

axis=1, inplace=True)

let's view the first five elements and see how the

dataframe was changed

df_can.head()

Rename some of the columns so that they make
sense.

df_can.rename(columns={'OdName':'Country',

'AreaName':'Continent','RegName':'Region'},

inplace=True)

let's view the first five elements and see how the

dataframe was changed

df_can.head()

For consistency, ensure that all column labels
of type string

let's examine the types of the column labels

all(isinstance(column, str) for column in

df_can.columns)

Notice how the above line of code returned _False_

when we tested if all the column labels are of type

string. So let's change them all to **string** type

df_can.columns = list(map(str, df_can.columns))

let's check the column labels types now

all(isinstance(column, str) for column in

df_can.columns)

Set the country name as index - useful for
quickly looking up countries using .loc method

df_can.set_index('Country', inplace=True)

Let's view the first five elements and see how the

dataframe was changed

df_can.head()

Add total column

df_can['Total'] = df_can.sum(axis=1)

let's view the first five elements and see how the

dataframe was changed

df_can.head()

finally, let's create a list of years from 1980 - 2013

this will come in handy when we start plotting the

data

years = list(map(str, range(1980, 2014)))

years

Visualizing Data using Matplotlib

use the inline backend to generate the plots within

the browser

% matplotlib inline

import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.style.use('ggplot') # optional: for ggplot-like

style

check for latest version of Matplotlib

print('Matplotlib version: ', mpl.__version__) # >=

2.0.0

In the last module, we created a line plot that visualized the
top 5 countries that contribued the most immigrants to
Canada from 1980 to 2013. With a little modification to the
code, we can visualize this plot as a cumulative plot, also
knows as a Stacked Line Plot or Area plot.

df_can.sort_values(['Total'], ascending=False, axis=0,

inplace=True)

get the top 5 entries

df_top5 = df_can.head()

transpose the dataframe

df_top5 = df_top5[years].transpose()

df_top5.head()

Area plots are stacked by default. And to produce a stacked
area plot, each column must be either all positive or all
negative values (any NaN , i.e. not a number, values will default
to 0. To produce an unstacked plot, set parameter stacked
to value False .

let's change the index values of df_top5 to type

integer for plotting

df_top5.index = df_top5.index.map(int)

df_top5.plot(kind='area',

 stacked=False,

 figsize=(20, 10)) # pass a tuple (x, y)

size

plt.title('Immigration Trend of Top 5 Countries')

plt.ylabel('Number of Immigrants')

plt.xlabel('Years')

plt.show()

The unstacked plot has a default transparency (alpha value)
at 0.5. We can modify this value by passing in the alpha
parameter.

df_top5.plot(kind='area',

 alpha=0.25, # 0 - 1, default value alpha =

0.5

 stacked=False,

 figsize=(20, 10))

plt.title('Immigration Trend of Top 5 Countries')

plt.ylabel('Number of Immigrants')

plt.xlabel('Years')

plt.show()

Two types of plotting

As we discussed in the video lectures, there are two
styles/options of plotting with matplotlib， plotting using the
Artist layer and plotting using the scripting layer.

Option 1 Scripting layer (procedural method) - using
matplotlib.pyplot as 'plt'

You can use plt i.e. matplotlib.pyplot and add more
elements by calling different methods procedurally; for
example, plt.title(...) to add title or plt.xlabel(...) to
add label to the x-axis

Option 1: This is what we have been using so far

 df_top5.plot(kind='area', alpha=0.35, figsize=(20,

10))

 plt.title('Immigration trend of top 5 countries')

 plt.ylabel('Number of immigrants')

 plt.xlabel('Years')

Option 2 Artist layer (Object oriented method) - using an
Axes instance from Matplotlib (preferred)

You can use an Axes instance of your current plot and store it
in a variable (eg. ax). You can add more elements by calling
methods with a little change in syntax (by adding " set_ " to
the previous methods). For example, use ax.set_title()
instead of plt.title() to add title, or ax.set_xlabel()
instead of plt.xlabel() to add label to the x-axis.

This option sometimes is more transparent and flexible to use
for advanced plots (in particular when having multiple plots,
as you will see later).

In this course, we will stick to the scripting layer, except for
some advanced visualizations where we will need to use the
artist layer to manipulate advanced aspects of the plots

option 2: preferred option with more flexibility

ax = df_top5.plot(kind='area', alpha=0.35, figsize=(20,

10))

ax.set_title('Immigration Trend of Top 5 Countries')

ax.set_ylabel('Number of Immigrants')

ax.set_xlabel('Years')

Use the scripting layer to create a stacked area plot of the 5
countries that contributed the least to immigration to Canada
from 1980 to 2013. Use a transparency value of 0.45.

#The correct answer is:

 # get the 5 countries with the least contribution

 df_least5 = df_can.tail(5)

 # transpose the dataframe

 df_least5 = df_least5[years].transpose()

 df_least5.head()

 df_least5.index = df_least5.index.map(int) # let's

change the index values of df_least5 to type integer for

plotting

 df_least5.plot(kind='area', alpha=0.45, figsize=(20,

10))

 plt.title('Immigration Trend of 5 Countries with

Least Contribution to Immigration')

 plt.ylabel('Number of Immigrants')

 plt.xlabel('Years')

 plt.show()

Use the artist layer to create an unstacked area plot of the 5
countries that contributed the least to immigration to Canada
from 1980 to 2013. Use a transparency value of 0.55

 # get the 5 countries with the least contribution

 df_least5 = df_can.tail(5)

 # transpose the dataframe

 df_least5 = df_least5[years].transpose()

 df_least5.head()

 df_least5.index = df_least5.index.map(int) # let's

change the index values of df_least5 to type integer for

plotting

 ax = df_least5.plot(kind='area', alpha=0.55,

stacked=False, figsize=(20, 10))

 ax.set_title('Immigration Trend of 5 Countries with

Least Contribution to Immigration')

 ax.set_ylabel('Number of Immigrants')

 ax.set_xlabel('Years')

Histograms

A histogram is a way of representing the frequency
distribution of numeric dataset. The way it works is it

partitions the x-axis into bins, assigns each data point in our
dataset to a bin, and then counts the number of data points
that have been assigned to each bin. So the y-axis is the
frequency or the number of data points in each bin. Note that
we can change the bin size and usually one needs to tweak it
so that the distribution is displayed nicely.

Question: What is the frequency distribution of the number
(population) of new immigrants from the various countries to
Canada in 2013?

Before we proceed with creating the histogram plot, let's first
examine the data split into intervals. To do this, we will us
Numpy's histrogram method to get the bin ranges and
frequency counts as follows:

let's quickly view the 2013 data

df_can['2013'].head()

np.histogram returns 2 values

count, bin_edges = np.histogram(df_can['2013'])

print(count) # frequency count

print(bin_edges) # bin ranges, default = 10 bins

output:

[178 11 1 2 0 0 0 0 1 2]

[0. 3412.9 6825.8 10238.7 13651.6 17064.5 20477.4

23890.3 27303.2

 30716.1 34129.]

We can easily graph this distribution by passing

`kind=hist` to `plot()`.

df_can['2013'].plot(kind='hist', figsize=(8, 5))

add a title to the histogram

plt.title('Histogram of Immigration from 195 Countries

in 2013')

add y-label

plt.ylabel('Number of Countries')

add x-label

plt.xlabel('Number of Immigrants')

plt.show()

In the above plot, the x-axis represents the

population range of immigrants in intervals of 3412.9.

The y-axis represents the number of countries that

contributed to the aforementioned population.

Notice that the x-axis labels do not match with the

bin size. This can be fixed by passing in a `xticks`

keyword that contains the list of the bin sizes, as

follows

'bin_edges' is a list of bin intervals

count, bin_edges = np.histogram(df_can['2013'])

df_can['2013'].plot(kind='hist', figsize=(8, 5),

xticks=bin_edges)

plt.title('Histogram of Immigration from 195 countries

in 2013') # add a title to the histogram

plt.ylabel('Number of Countries') # add y-label

plt.xlabel('Number of Immigrants') # add x-label

plt.show()

We can also plot multiple histograms on the same plot. For
example, let's try to answer the following questions using a
histogram.

Question What is the immigration distribution for Denmark,
Norway, and Sweden for years 1980  2013?

let's quickly view the dataset

df_can.loc[['Denmark', 'Norway', 'Sweden'], years]

transpose dataframe

df_t = df_can.loc[['Denmark', 'Norway', 'Sweden'],

years].transpose()

df_t.head()

generate histogram

df_t.plot(kind='hist', figsize=(10, 6))

plt.title('Histogram of Immigration from Denmark,

Norway, and Sweden from 1980 - 2013')

plt.ylabel('Number of Years')

plt.xlabel('Number of Immigrants')

plt.show()

Let's make a few modifications to improve the impact and
aesthetics of the previous plot:

-increase the bin size to 15 by passing in bins parameter;
-set transparency to 60% by passing in alpha parameter;
-label the x-axis by passing in x-label parameter;
-change the colors of the plots by passing in color paramete

let's get the x-tick values

count, bin_edges = np.histogram(df_t, 15)

un-stacked histogram

df_t.plot(kind ='hist',

 figsize=(10, 6),

 bins=15,

 alpha=0.6,

 xticks=bin_edges,

 color=['coral', 'darkslateblue',

'mediumseagreen']

)

plt.title('Histogram of Immigration from Denmark,

Norway, and Sweden from 1980 - 2013')

plt.ylabel('Number of Years')

plt.xlabel('Number of Immigrants')

plt.show()

If we do not want the plots to overlap each other, we can
stack them using the stacked parameter. Let's also adjust the
min and max x-axis labels to remove the extra gap on the
edges of the plot. We can pass a tuple (min,max) using the
xlim paramater, as show below.

count, bin_edges = np.histogram(df_t, 15)

xmin = bin_edges[0] - 10 # first bin value is 31.0,

adding buffer of 10 for aesthetic purposes

xmax = bin_edges[-1] + 10 # last bin value is 308.0,

adding buffer of 10 for aesthetic purposes

stacked Histogram

df_t.plot(kind='hist',

 figsize=(10, 6),

 bins=15,

 xticks=bin_edges,

 color=['coral', 'darkslateblue',

'mediumseagreen'],

 stacked=True,

 xlim=(xmin, xmax)

)

plt.title('Histogram of Immigration from Denmark,

Norway, and Sweden from 1980 - 2013')

plt.ylabel('Number of Years')

plt.xlabel('Number of Immigrants')

plt.show()

Use the scripting layer to display the immigration distribution
for Greece, Albania, and Bulgaria for years 1980  2013? Use
an overlapping plot with 15 bins and a transparency value of
0.35.

create a dataframe of the countries of interest (cof)

 df_cof = df_can.loc[['Greece', 'Albania',

'Bulgaria'], years]

 # transpose the dataframe

 df_cof = df_cof.transpose()

 # let's get the x-tick values

 count, bin_edges = np.histogram(df_cof, 15)

 # Un-stacked Histogram

 df_cof.plot(kind ='hist',

 figsize=(10, 6),

 bins=15,

 alpha=0.35,

 xticks=bin_edges,

 color=['coral', 'darkslateblue',

'mediumseagreen']

)

 plt.title('Histogram of Immigration from Greece,

Albania, and Bulgaria from 1980 - 2013')

 plt.ylabel('Number of Years')

 plt.xlabel('Number of Immigrants')

 plt.show()

Bar Charts (Dataframe)

A bar plot is a way of representing data where the length of
the bars represents the magnitude/size of the
feature/variable. Bar graphs usually represent numerical and
categorical variables grouped in intervals.

To create a bar plot, we can pass one of two arguments via
kind parameter in plot() :

kind=bar creates a vertical bar plot
kind=barh creates a horizontal bar plot

Vertical bar plot

In vertical bar graphs, the x-axis is used for labelling, and the
length of bars on the y-axis corresponds to the magnitude of
the variable being measured. Vertical bar graphs are
particularly useful in analyzing time series data. One
disadvantage is that they lack space for text labelling at the
foot of each bar.

Let's start off by analyzing the effect of Iceland's Financial
Crisis:

The 2008  2011 Icelandic Financial Crisis was a major
economic and political event in Iceland. Relative to the size of
its economy, Iceland's systemic banking collapse was the
largest experienced by any country in economic history. The

crisis led to a severe economic depression in 2008  2011 and
significant political unrest.

Let's compare the number of Icelandic immigrants (country =
'Iceland') to Canada from year 1980 to 2013

step 1: get the data

df_iceland = df_can.loc['Iceland', years]

df_iceland.head()

step 2: plot data

df_iceland.plot(kind='bar', figsize=(10, 6))

plt.xlabel('Year') # add to x-label to the plot

plt.ylabel('Number of immigrants') # add y-label to the

plot

plt.title('Icelandic immigrants to Canada from 1980 to

2013') # add title to the plot

plt.show()

Let's annotate this on the plot using the annotate method of
the scripting layer or the pyplot interface. We will pass in the
following parameters:

s : str, the text of annotation.
xy  Tuple specifying the (x,y) point to annotate (in this
case, end point of arrow).
xytext  Tuple specifying the (x,y) point to place the text
(in this case, start point of arrow).

xycoords  The coordinate system that xy is given in -
'data' uses the coordinate system of the object being
annotated (default).
arrowprops  Takes a dictionary of properties to draw the
arrow:

arrowstyle  Specifies the arrow style, '->' is
standard arrow.
connectionstyle  Specifies the connection type. arc3
is a straight line.
color  Specifies color of arrow.
lw  Specifies the line width

df_iceland.plot(kind='bar', figsize=(10, 6), rot=90) #

rotate the xticks(labelled points on x-axis) by 90

degrees

plt.xlabel('Year')

plt.ylabel('Number of Immigrants')

plt.title('Icelandic Immigrants to Canada from 1980 to

2013')

Annotate arrow

plt.annotate('', # s: str. Will leave it blank for no

text

 xy=(32, 70), # place head of the arrow at

point (year 2012 , pop 70)

 xytext=(28, 20), # place base of the arrow

at point (year 2008 , pop 20)

 xycoords='data', # will use the coordinate

system of the object being annotated

 arrowprops=dict(arrowstyle='->',

connectionstyle='arc3', color='blue', lw=2)

)

plt.show()

Let's also annotate a text to go over the arrow. We will pass in
the following additional parameters:

rotation : rotation angle of text in degrees (counter
clockwise)
va : vertical alignment of text [‘center’ | ‘top’ | ‘bottom’ |
‘baseline’]
ha : horizontal alignment of text [‘center’ | ‘right’ | ‘left’]

df_iceland.plot(kind='bar', figsize=(10, 6), rot=90)

plt.xlabel('Year')

plt.ylabel('Number of Immigrants')

plt.title('Icelandic Immigrants to Canada from 1980 to

2013')

Annotate arrow

plt.annotate('', # s: str. will leave it blank for no

text

 xy=(32, 70), # place head of the arrow at

point (year 2012 , pop 70)

 xytext=(28, 20), # place base of the arrow

at point (year 2008 , pop 20)

 xycoords='data', # will use the coordinate

system of the object being annotated

 arrowprops=dict(arrowstyle='->',

connectionstyle='arc3', color='blue', lw=2)

)

Annotate Text

plt.annotate('2008 - 2011 Financial Crisis', # text to

display

 xy=(28, 30), # start the text at at point

(year 2008 , pop 30)

 rotation=72.5, # based on trial and error

to match the arrow

 va='bottom', # want the text to be

vertically 'bottom' aligned

 ha='left', # want the text to be

horizontally 'left' algned.

)

plt.show()

Horizontal Bar Plot

Sometimes it is more practical to represent the data
horizontally, especially if you need more room for labelling the
bars. In horizontal bar graphs, the y-axis is used for labelling,
and the length of bars on the x-axis corresponds to the
magnitude of the variable being measured. As you will see,
there is more room on the y-axis to label categorical
variables.

Using the scripting later and the df_can dataset, create a
horizontal bar plot showing the total number of immigrants to

Canada from the top 15 countries, for the period 1980  2013.
Label each country with the total immigrant count

 # sort dataframe on 'Total' column (descending)

 df_can.sort_values(by='Total', ascending=True,

inplace=True)

 # get top 15 countries

 df_top15 = df_can['Total'].tail(15)

 df_top15

generate plot

 df_top15.plot(kind='barh', figsize=(12, 12),

color='steelblue')

 plt.xlabel('Number of Immigrants')

 plt.title('Top 15 Conuntries Contributing to the

Immigration to Canada between 1980 - 2013')

 # annotate value labels to each country

 for index, value in enumerate(df_top15):

 label = format(int(value), ',') # format int

with commas

 # place text at the end of bar (subtracting 47000

from x, and 0.1 from y to make it fit within the bar)

 plt.annotate(label, xy=(value - 47000, index -

0.10), color='white')

 plt.show()

Pie Charts

A pie chart is a circular graphic that displays numeric
proportions by dividing a circle (or pie) into proportional
slices. You are most likely already familiar with pie charts as it
is widely used in business and media. We can create pie
charts in Matplotlib by passing in the kind=pie keyword.

Let's use a pie chart to explore the proportion (percentage) of
new immigrants grouped by continents for the entire time
period from 1980 to 2013

Step 1 Gather data.

We will use pandas groupby method to summarize the
immigration data by Continent . The general process of
groupby involves the following steps:

 Split: Splitting the data into groups based on some
criteria.

 Apply: Applying a function to each group independently:
.sum() .count() .mean() .std() .aggregate() .apply() .etc..

 Combine: Combining the results into a data structure.

group countries by continents and apply sum() function

df_continents = df_can.groupby('Continent',

axis=0).sum()

note: the output of the groupby method is a `groupby'

object.

we can not use it further until we apply a function

(eg .sum())

print(type(df_can.groupby('Continent', axis=0)))

df_continents.head()

Step 2 Plot the data. We will pass in kind = 'pie' keyword,
along with the following additional parameters:

autopct - is a string or function used to label the wedges
with their numeric value. The label will be placed inside
the wedge. If it is a format string, the label will be
fmt%pct .
startangle - rotates the start of the pie chart by angle
degrees counterclockwise from the x-axis.
shadow  Draws a shadow beneath the pie (to give a 3D
feel).

autopct create %, start angle represent starting point

df_continents['Total'].plot(kind='pie',

 figsize=(5, 6),

 autopct='%1.1f%%', # add in

percentages

 startangle=90, # start

angle 90° (Africa)

 shadow=True, # add

shadow

)

plt.title('Immigration to Canada by Continent [1980 -

2013]')

plt.axis('equal') # Sets the pie chart to look like a

circle.

plt.show()

Remove the text labels on the pie chart by passing in
legend and add it as a seperate legend using
plt.legend() .
Push out the percentages to sit just outside the pie chart
by passing in pctdistance parameter.
Pass in a custom set of colors for continents by passing in
colors parameter.
Explode the pie chart to emphasize the lowest three
continents (Africa, North America, and Latin America and
Caribbean) by passing in explode parameter.

colors_list = ['gold', 'yellowgreen', 'lightcoral',

'lightskyblue', 'lightgreen', 'pink']

explode_list = [0.1, 0, 0, 0, 0.1, 0.1] # ratio for each

continent with which to offset each wedge.

df_continents['Total'].plot(kind='pie',

 figsize=(15, 6),

 autopct='%1.1f%%',

 startangle=90,

 shadow=True,

 labels=None, # turn

off labels on pie chart

 pctdistance=1.12, # the

ratio between the center of each pie slice and the start

of the text generated by autopct

 colors=colors_list, # add

custom colors

 explode=explode_list #

'explode' lowest 3 continents

)

scale the title up by 12% to match pctdistance

plt.title('Immigration to Canada by Continent [1980 -

2013]', y=1.12)

plt.axis('equal')

add legend

plt.legend(labels=df_continents.index, loc='upper left')

plt.show()

Using a pie chart, explore the proportion (percentage) of new
immigrants grouped by continents in the year 2013

explode_list = [0.0, 0, 0, 0.1, 0.1, 0.2] # ratio for

each continent with which to offset each wedge.

 df_continents['2013'].plot(kind='pie',

 figsize=(15, 6),

 autopct='%1.1f%%',

 startangle=90,

 shadow=True,

 labels=None,

turn off labels on pie chart

 pctdistance=1.12,

the ratio between the pie center and start of text

label

 explode=explode_list

'explode' lowest 3 continents

)

 # scale the title up by 12% to match pctdistance

 plt.title('Immigration to Canada by Continent in

2013', y=1.12)

 plt.axis('equal')

 # add legend

 plt.legend(labels=df_continents.index, loc='upper

left')

 # show plot

 plt.show()

Box Plots

A box plot is a way of statistically representing the
distribution of the data through five main dimensions:

Minimum: The smallest number in the dataset excluding
the outliers.
First quartile: Middle number between the minimum and
the median .
Second quartile (Median): Middle number of the (sorted)
dataset.
Third quartile: Middle number between median and
maximum .
Maximum: The largest number in the dataset excluding
the outliers.

To make a boxplot , we can use kind=box in plot method
invoked on a pandas series or dataframe.

Let's plot the box plot for the Japanese immigrants between
1980  2013.

Step 1 Get the subset of the dataset. Even though we are
extracting the data for just one country, we will obtain it as a
dataframe. This will help us with calling the
dataframe.describe() method to view the percentiles.

to get a dataframe, place extra square brackets around

'Japan'.

df_japan = df_can.loc[['Japan'], years].transpose()

df_japan.head()

Step 2 Plot by passing in kind='box' .

df_japan.plot(kind='box', figsize=(8, 6))

plt.title('Box plot of Japanese Immigrants from 1980 -

2013')

plt.ylabel('Number of Immigrants')

plt.show()

One of the key benefits of box plots is comparing the
distribution of multiple datasets. In one of the previous labs,
we observed that China and India had very similar immigration
trends. Let's analyze these two countries further using box
plots

Compare the distribution of the number of new immigrants
from India and China for the period 1980  2013

df_CI= df_can.loc[['China', 'India'], years].transpose()

df_CI.head()

df_CI.describe()

df_CI.plot(kind='box', figsize=(10, 7))

 plt.title('Box plots of Immigrants from China and

India (1980 - 2013)')

 plt.ylabel('Number of Immigrants')

 plt.show()

If you prefer to create horizontal box plots, you can pass the
vert parameter in the plot function and assign it to False. You
can also specify a different color in case you are not a big fan
of the default red color.

horizontal box plots

df_CI.plot(kind='box', figsize=(10, 7), color='blue',

vert=False)

plt.title('Box plots of Immigrants from China and India

(1980 - 2013)')

plt.xlabel('Number of Immigrants')

plt.show()

Subplots
Often times we might want to plot multiple plots within the
same figure. For example, we might want to perform a side by

side comparison of the box plot with the line plot of China and
India's immigration.

To visualize multiple plots together, we can create a figure
(overall canvas) and divide it into subplots , each containing a
plot. With subplots, we usually work with the artist layer
instead of the scripting layer.

Typical syntax is :

 fig = plt.figure() # create figure

 ax = fig.add_subplot(nrows, ncols, plot_number) #

create subplots

Where

nrows and ncols are used to notionally split the figure
into (nrows * ncols) sub-axes,
plot_number is used to identify the particular subplot that
this function is to create within the notional grid.
plot_number starts at 1, increments across rows first and
has a maximum of nrows * ncols as shown below.

We can then specify which subplot to place each plot by
passing in the ax paramemter in plot() method as follows:

fig = plt.figure() # create figure

ax0 = fig.add_subplot(1, 2, 1) # add subplot 1 (1 row, 2

columns, first plot)

ax1 = fig.add_subplot(1, 2, 2) # add subplot 2 (1 row, 2

columns, second plot). See tip below**

Subplot 1: Box plot

df_CI.plot(kind='box', color='blue', vert=False,

figsize=(20, 6), ax=ax0) # add to subplot 1

ax0.set_title('Box Plots of Immigrants from China and

India (1980 - 2013)')

ax0.set_xlabel('Number of Immigrants')

ax0.set_ylabel('Countries')

Subplot 2: Line plot

df_CI.plot(kind='line', figsize=(20, 6), ax=ax1) # add

to subplot 2

ax1.set_title ('Line Plots of Immigrants from China and

India (1980 - 2013)')

ax1.set_ylabel('Number of Immigrants')

ax1.set_xlabel('Years')

plt.show()

In the case when nrows , ncols , and plot_number are all less
than 10, a convenience exists such that a 3-digit number can
be given instead, where the hundreds represent nrows , the
tens represent ncols and the units represent plot_number .
For instance,

subplot(211  subplot(2, 1, 1

produces a subaxes in a figure which represents the top plot
(i.e. the first) in a 2 rows by 1 column notional grid (no grid

actually exists, but conceptually this is how the returned
subplot has been positioned).

Create a box plot to visualize the distribution of the top 15
countries (based on total immigration) grouped by the
decades 1980s , 1990s , and 2000s .

Step 1 Get the dataset. Get the top 15 countries based on
Total immigrant population. Name the dataframe df_top15

df_top15 = df_can.sort_values(['Total'],

ascending=False, axis=0).head(15)

df_top15

Step 2 Create a new dataframe which contains the aggregate
for each decade. One way to do that:

 Create a list of all years in decades 80's, 90's, and 00's.
 Slice the original dataframe df_can to create a series for

each decade and sum across all years for each country.
 Merge the three series into a new data frame. Call your

dataframe new_df

create a list of all years in decades 80's, 90's, and

00's

years_80s = list(map(str, range(1980, 1990)))

years_90s = list(map(str, range(1990, 2000)))

years_00s = list(map(str, range(2000, 2010)))

slice the original dataframe df_can to create a series

for each decade

df_80s = df_top15.loc[:, years_80s].sum(axis=1)

df_90s = df_top15.loc[:, years_90s].sum(axis=1)

df_00s = df_top15.loc[:, years_00s].sum(axis=1)

merge the three series into a new data frame

new_df = pd.DataFrame({'1980s': df_80s, '1990s': df_90s,

'2000s':df_00s})

display dataframe

new_df.head()

Step 3 Plot the box plots.

 new_df.plot(kind='box', figsize=(10, 6))

 plt.title('Immigration from top 15 countries for

decades 80s, 90s and 2000s')

 plt.show()

Scatter Plots

A scatter plot 2D is a useful method of comparing
variables against each other. Scatter plots look similar to
line plots in that they both map independent and
dependent variables on a 2D graph. While the data points are
connected together by a line in a line plot, they are not
connected in a scatter plot. The data in a scatter plot is
considered to express a trend. With further analysis using
tools like regression, we can mathematically calculate this
relationship and use it to predict trends outside the dataset.

Using a scatter plot , let's visualize the trend of total
immigrantion to Canada (all countries combined) for the years
1980  2013.

we can use the sum() method to get the total

population per year

df_tot = pd.DataFrame(df_can[years].sum(axis=0))

change the years to type int (useful for regression

later on)

df_tot.index = map(int, df_tot.index)

reset the index to put in back in as a column in the

df_tot dataframe

df_tot.reset_index(inplace = True)

rename columns

df_tot.columns = ['year', 'total']

view the final dataframe

df_tot.head()

df_tot.plot(kind='scatter', x='year', y='total',

figsize=(10, 6), color='darkblue')

plt.title('Total Immigration to Canada from 1980 -

2013')

plt.xlabel('Year')

plt.ylabel('Number of Immigrants')

plt.show()

let's try to plot a linear line of best fit, and use it to predict the
number of immigrants in 2015.

Step 1 Get the equation of line of best fit. We will use
Numpy's polyfit() method by passing in the following:

x : x-coordinates of the data.
y : y-coordinates of the data.
deg  Degree of fitting polynomial. 1  linear, 2  quadratic,
and so on.

x = df_tot['year'] # year on x-axis

y = df_tot['total'] # total on y-axis

fit = np.polyfit(x, y, deg=1)

fit

The output is an array with the polynomial coefficients,
highest powers first. Since we are plotting a linear regression
y= a * x + b , our output has 2 elements [5.56709228e+03,
-1.09261952e+07] with the the slope in position 0 and
intercept in position 1

Step 2 Plot the regression line on the scatter plot .

df_tot.plot(kind='scatter', x='year', y='total',

figsize=(10, 6), color='darkblue')

plt.title('Total Immigration to Canada from 1980 -

2013')

plt.xlabel('Year')

plt.ylabel('Number of Immigrants')

plot line of best fit

plt.plot(x, fit[0] * x + fit[1], color='red') # recall

that x is the Years

plt.annotate('y={0:.0f} x + {1:.0f}'.format(fit[0],

fit[1]), xy=(2000, 150000))

plt.show()

print out the line of best fit

'No. Immigrants = {0:.0f} * Year +

{1:.0f}'.format(fit[0], fit[1])

'No. Immigrants = 5567 * Year + -10926195'

Using the equation of line of best fit, we can estimate the
number of immigrants in 2015

No. Immigrants = 5567 Year - 10926195
No. Immigrants = 5567 2015  10926195
No. Immigrants = 291,310

Create a scatter plot of the total immigration from Denmark,
Norway, and Sweden to Canada from 1980 to 2013?

create df_countries dataframe

 df_countries = df_can.loc[['Denmark', 'Norway',

'Sweden'], years].transpose()

 # create df_total by summing across three countries

for each year

 df_total = pd.DataFrame(df_countries.sum(axis=1))

 # reset index in place

 df_total.reset_index(inplace=True)

 # rename columns

 df_total.columns = ['year', 'total']

 # change column year from string to int to create

scatter plot

 df_total['year'] = df_total['year'].astype(int)

 # show resulting dataframe

 df_total.head()

 # generate scatter plot

 df_total.plot(kind='scatter', x='year', y='total',

figsize=(10, 6), color='darkblue')

 # add title and label to axes

 plt.title('Immigration from Denmark, Norway, and

Sweden to Canada from 1980 - 2013')

 plt.xlabel('Year')

 plt.ylabel('Number of Immigrants')

 # show plot

 plt.show()

Bubble Plots

A bubble plot is a variation of the scatter plot that displays
three dimensions of data (x, y, z). The data points are
replaced with bubbles, and the size of the bubble is
determined by the third variable z , also known as the weight.
In maplotlib , we can pass in an array or scalar to the
parameter s to plot() , that contains the weight of each
point.

Let's start by analyzing the effect of Argentina's great
depression

Argentina suffered a great depression from 1998 to 2002,
which caused widespread unemployment, riots, the fall of the
government, and a default on the country's foreign debt. In
terms of income, over 50% of Argentines were poor, and
seven out of ten Argentine children were poor at the depth of
the crisis in 2002.

Let's analyze the effect of this crisis, and compare Argentina's
immigration to that of it's neighbour Brazil. Let's do that using
a bubble plot of immigration from Brazil and Argentina for
the years 1980  2013. We will set the weights for the bubble
as the normalized value of the population for each year

transposed dataframe

df_can_t = df_can[years].transpose()

cast the Years (the index) to type int

df_can_t.index = map(int, df_can_t.index)

let's label the index. This will automatically be the

column name when we reset the index

df_can_t.index.name = 'Year'

reset index to bring the Year in as a column

df_can_t.reset_index(inplace=True)

view the changes

df_can_t.head()

Step 2 Create the normalized weights.

There are several methods of normalizations in statistics,
each with its own use. In this case, we will use [feature
scaling] to bring all values into the range [0, 1. The general
formula is:

where 𝑋X is the original value, 𝑋′X′ is the corresponding
normalized value. The formula sets the max value in the
dataset to 1, and sets the min value to 0. The rest of the data
points are scaled to a value between 01 accordingly.

normalize Brazil data

norm_brazil = (df_can_t['Brazil'] -

df_can_t['Brazil'].min()) / (df_can_t['Brazil'].max() -

df_can_t['Brazil'].min())

normalize Argentina data

norm_argentina = (df_can_t['Argentina'] -

df_can_t['Argentina'].min()) /

(df_can_t['Argentina'].max() -

df_can_t['Argentina'].min())

Step 3 Plot the data.

To plot two different scatter plots in one plot, we can
include the axes one plot into the other by passing it via
the ax parameter.
We will also pass in the weights using the s parameter.
Given that the normalized weights are between 01, they
won't be visible on the plot. Therefore, we will:

multiply weights by 2000 to scale it up on the graph,
and,
add 10 to compensate for the min value (which has a 0
weight and therefore scale with ×20002000.

Brazil

ax0 = df_can_t.plot(kind='scatter',

 x='Year',

 y='Brazil',

 figsize=(14, 8),

 alpha=0.5, # transparency

 color='green',

 s=norm_brazil * 2000 + 10, # pass in

weights

 xlim=(1975, 2015)

)

Argentina

ax1 = df_can_t.plot(kind='scatter',

 x='Year',

 y='Argentina',

 alpha=0.5,

 color="blue",

 s=norm_argentina * 2000 + 10,

 ax=ax0

)

ax0.set_ylabel('Number of Immigrants')

ax0.set_title('Immigration from Brazil and Argentina

from 1980 to 2013')

ax0.legend(['Brazil', 'Argentina'], loc='upper left',

fontsize='x-large')

Waffle Charts

A waffle chart is an interesting visualization that is normally
created to display progress toward goals. It is commonly an
effective option when you are trying to add interesting
visualization features to a visual that consists mainly of cells,
such as an Excel dashboard.

Unfortunately, unlike R, waffle charts are not built into any of
the Python visualization libraries. Therefore, we will learn how
to create them from scratch.

Step 1. The first step into creating a waffle chart is determing
the proportion of each category with respect to the total.

compute the proportion of each category with respect

to the total

total_values = df_dsn['Total'].sum()

category_proportions = df_dsn['Total'] / total_values

print out proportions

pd.DataFrame({"Category Proportion":

category_proportions})

Step 2. The second step is defining the overall size of the
waffle chart

width = 40 # width of chart

height = 10 # height of chart

total_num_tiles = width * height # total number of tiles

print(f'Total number of tiles is {total_num_tiles}.')

Step 3. The third step is using the proportion of each
category to determe it respective number of tiles

compute the number of tiles for each category

tiles_per_category = (category_proportions *

total_num_tiles).round().astype(int)

print out number of tiles per category

pd.DataFrame({"Number of tiles": tiles_per_category})

Step 4. The fourth step is creating a matrix that resembles
the waffle chart and populating it.

initialize the waffle chart as an empty matrix

waffle_chart = np.zeros((height, width), dtype =

np.uint)

define indices to loop through waffle chart

category_index = 0

tile_index = 0

populate the waffle chart

for col in range(width):

 for row in range(height):

 tile_index += 1

 # if the number of tiles populated for the

current category is equal to its corresponding allocated

tiles...

 if tile_index >

sum(tiles_per_category[0:category_index]):

 # ...proceed to the next category

 category_index += 1

 # set the class value to an integer, which

increases with class

 waffle_chart[row, col] = category_index

print ('Waffle chart populated!')

waffle_chart

Step 5. Map the waffle chart matrix into a visual.

instantiate a new figure object

fig = plt.figure()

use matshow to display the waffle chart

colormap = plt.cm.coolwarm

plt.matshow(waffle_chart, cmap=colormap)

plt.colorbar()

plt.show()

Step 6. Prettify the chart.

instantiate a new figure object

fig = plt.figure()

use matshow to display the waffle chart

colormap = plt.cm.coolwarm

plt.matshow(waffle_chart, cmap=colormap)

plt.colorbar()

get the axis

ax = plt.gca()

set minor ticks

ax.set_xticks(np.arange(-.5, (width), 1), minor=True)

ax.set_yticks(np.arange(-.5, (height), 1), minor=True)

add gridlines based on minor ticks

ax.grid(which='minor', color='w', linestyle='-',

linewidth=2)

plt.xticks([])

plt.yticks([])

plt.show()

Step 7. Create a legend and add it to chart.

instantiate a new figure object

fig = plt.figure()

use matshow to display the waffle chart

colormap = plt.cm.coolwarm

plt.matshow(waffle_chart, cmap=colormap)

plt.colorbar()

get the axis

ax = plt.gca()

set minor ticks

ax.set_xticks(np.arange(-.5, (width), 1), minor=True)

ax.set_yticks(np.arange(-.5, (height), 1), minor=True)

add gridlines based on minor ticks

ax.grid(which='minor', color='w', linestyle='-',

linewidth=2)

plt.xticks([])

plt.yticks([])

compute cumulative sum of individual categories to

match color schemes between chart and legend

values_cumsum = np.cumsum(df_dsn['Total'])

total_values = values_cumsum[len(values_cumsum) - 1]

create legend

legend_handles = []

for i, category in enumerate(df_dsn.index.values):

 label_str = category + ' (' + str(df_dsn['Total']

[i]) + ')'

 color_val =

colormap(float(values_cumsum[i])/total_values)

legend_handles.append(mpatches.Patch(color=color_val,

label=label_str))

add legend to chart

plt.legend(handles=legend_handles,

 loc='lower center',

 ncol=len(df_dsn.index.values),

 bbox_to_anchor=(0., -0.2, 0.95, .1)

)

plt.show()

Now it would very inefficient to repeat these seven steps
every time we wish to create a waffle chart. So let's combine
all seven steps into one function called create_waffle_chart.
This function would take the following parameters as input:

 categories Unique categories or classes in dataframe.
 values Values corresponding to categories or classes.
 height Defined height of waffle chart.
 width Defined width of waffle chart.
 colormap Colormap class

 value_sign In order to make our function more
generalizable, we will add this parameter to address signs
that could be associated with a value such as %, $, and so
on. value_sign has a default value of empty string.

def create_waffle_chart(categories, values, height,

width, colormap, value_sign=''):

 # compute the proportion of each category with

respect to the total

 total_values = sum(values)

 category_proportions = [(float(value) /

total_values) for value in values]

 # compute the total number of tiles

 total_num_tiles = width * height # total number of

tiles

 print ('Total number of tiles is', total_num_tiles)

 # compute the number of tiles for each catagory

 tiles_per_category = [round(proportion *

total_num_tiles) for proportion in category_proportions]

 # print out number of tiles per category

 for i, tiles in enumerate(tiles_per_category):

 print (df_dsn.index.values[i] + ': ' +

str(tiles))

 # initialize the waffle chart as an empty matrix

 waffle_chart = np.zeros((height, width))

 # define indices to loop through waffle chart

 category_index = 0

 tile_index = 0

 # populate the waffle chart

 for col in range(width):

 for row in range(height):

 tile_index += 1

 # if the number of tiles populated for the

current category

 # is equal to its corresponding allocated

tiles...

 if tile_index >

sum(tiles_per_category[0:category_index]):

 # ...proceed to the next category

 category_index += 1

 # set the class value to an integer, which

increases with class

 waffle_chart[row, col] = category_index

 # instantiate a new figure object

 fig = plt.figure()

 # use matshow to display the waffle chart

 colormap = plt.cm.coolwarm

 plt.matshow(waffle_chart, cmap=colormap)

 plt.colorbar()

 # get the axis

 ax = plt.gca()

 # set minor ticks

 ax.set_xticks(np.arange(-.5, (width), 1),

minor=True)

 ax.set_yticks(np.arange(-.5, (height), 1),

minor=True)

 # add dridlines based on minor ticks

 ax.grid(which='minor', color='w', linestyle='-',

linewidth=2)

 plt.xticks([])

 plt.yticks([])

 # compute cumulative sum of individual categories to

match color schemes between chart and legend

 values_cumsum = np.cumsum(values)

 total_values = values_cumsum[len(values_cumsum) - 1]

 # create legend

 legend_handles = []

 for i, category in enumerate(categories):

 if value_sign == '%':

 label_str = category + ' (' + str(values[i])

+ value_sign + ')'

 else:

 label_str = category + ' (' + value_sign +

str(values[i]) + ')'

 color_val =

colormap(float(values_cumsum[i])/total_values)

legend_handles.append(mpatches.Patch(color=color_val,

label=label_str))

 # add legend to chart

 plt.legend(

 handles=legend_handles,

 loc='lower center',

 ncol=len(categories),

 bbox_to_anchor=(0., -0.2, 0.95, .1)

)

 plt.show()

Now to create a waffle chart, all we have to do is call the
function create_waffle_chart . Let's define the input
parameters

width = 40 # width of chart

height = 10 # height of chart

categories = df_dsn.index.values # categories

values = df_dsn['Total'] # correponding values of

categories

colormap = plt.cm.coolwarm # color map class

create_waffle_chart(categories, values, height, width,

colormap)

Word Clouds

Word clouds (also known as text clouds or tag clouds) work in
a simple way: the more a specific word appears in a source of
textual data (such as a speech, blog post, or database), the
bigger and bolder it appears in the word cloud.
Luckily, a Python package already exists in Python for
generating word clouds. The package, called word_cloud

install wordcloud

! pip3 install wordcloud

import package and its set of stopwords

from wordcloud import WordCloud, STOPWORDS

print ('Wordcloud is installed and imported!')

Word clouds are commonly used to perform high-level
analysis and visualization of text data. Accordinly, let's digress
from the immigration dataset and work with an example that
involves analyzing text data. Let's try to analyze a short novel
written by Lewis Carroll titled Alice's Adventures in
Wonderland. Let's go ahead and download a .txt file of the
novel.

import urllib

open the file and read it into a variable alice_novel

alice_novel = urllib.request.urlopen('https://cf-

courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DV0101EN-

SkillsNetwork/Data%20Files/alice_novel.txt').read().deco

de("utf-8")

Next, let's use the stopwords that we imported from
word_cloud . We use the function set to remove any redundant
stopwords

stopwords = set(STOPWORDS)

Create a word cloud object and generate a word cloud. For
simplicity, let's generate a word cloud using only the first
2000 words in the novel

instantiate a word cloud object

alice_wc = WordCloud(

 background_color='white',

 max_words=2000,

 stopwords=stopwords

)

generate the word cloud

alice_wc.generate(alice_novel)

display the word cloud

plt.imshow(alice_wc, interpolation='bilinear')

plt.axis('off')

plt.show()

said isn't really an informative word. So let's add it to our
stopwords and re-generate the cloud.

stopwords.add('said') # add the words said to stopwords

re-generate the word cloud

alice_wc.generate(alice_novel)

display the cloud

fig = plt.figure(figsize=(14, 18))

plt.imshow(alice_wc, interpolation='bilinear')

plt.axis('off')

plt.show()

Another example
Unfortunately, our immigration data does not have any text
data, but where there is a will there is a way. Let's generate
sample text data from our immigration dataset, say text data
of 90 words.
Using countries with single-word names, let's duplicate each
country's name based on how much they contribute to the
total immigration.

total_immigration = df_can['Total'].sum()

total_immigration

max_words = 90

word_string = ''

for country in df_can.index.values:

 # check if country's name is a single-word name

 if country.count(" ") == 0:

 repeat_num_times = int(df_can.loc[country,

'Total'] / total_immigration * max_words)

 word_string = word_string + ((country + ' ') *

repeat_num_times)

display the generated text

word_string

We are not dealing with any stopwords here, so there is no
need to pass them when creating the word cloud.

create the word cloud

wordcloud =

WordCloud(background_color='white').generate(word_string

)

print('Word cloud created!')

display the cloud

plt.figure(figsize=(14, 18))

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis('off')

plt.show()

Regression Plots

In lab Pie Charts, Box Plots, Scatter Plots, and Bubble Plots,
we learned how to create a scatter plot and then fit a
regression line. It took ~20 lines of code to create the scatter
plot along with the regression fit. In this final section, we will

explore seaborn and see how efficient it is to create
regression lines and fits using this library!

install seaborn

! pip3 install seaborn

import library

import seaborn as sns

print('Seaborn installed and imported!')

Create a new dataframe that stores that total number of
landed immigrants to Canada per year from 1980 to 2013

we can use the sum() method to get the total

population per year

df_tot = pd.DataFrame(df_can[years].sum(axis=0))

change the years to type float (useful for regression

later on)

df_tot.index = map(float, df_tot.index)

reset the index to put in back in as a column in the

df_tot dataframe

df_tot.reset_index(inplace=True)

rename columns

df_tot.columns = ['year', 'total']

view the final dataframe

df_tot.head()

With seaborn, generating a regression plot is as simple as
calling the regplot function

sns.regplot(x='year', y='total', data=df_tot)

sns.regplot(x='year', y='total', data=df_tot,

color='green')

plt.show()

You can always customize the marker shape, so instead of
circular markers, let's use +

ax = sns.regplot(x='year', y='total', data=df_tot,

color='green', marker='+')

plt.show()

Let's blow up the plot a little so that it is more appealing to
the sight.

plt.figure(figsize=(15, 10))

sns.regplot(x='year', y='total', data=df_tot,

color='green', marker='+')

plt.show()

And let's increase the size of markers so they match the new
size of the figure, and add a title and x- and y-labels.

plt.figure(figsize=(15, 10))

ax = sns.regplot(x='year', y='total', data=df_tot,

color='green', marker='+', scatter_kws={'s': 200})

ax.set(xlabel='Year', ylabel='Total Immigration') # add

x- and y-labels

ax.set_title('Total Immigration to Canada from 1980 -

2013') # add title

plt.show()

And finally increase the font size of the tickmark labels, the
title, and the x- and y-labels so they don't feel left out

plt.figure(figsize=(15, 10))

sns.set(font_scale=1.5)

ax = sns.regplot(x='year', y='total', data=df_tot,

color='green', marker='+', scatter_kws={'s': 200})

ax.set(xlabel='Year', ylabel='Total Immigration')

ax.set_title('Total Immigration to Canada from 1980 -

2013')

plt.show()

If you are not a big fan of the purple background, you can
easily change the style to a white plain background

plt.figure(figsize=(15, 10))

sns.set(font_scale=1.5)

sns.set_style('ticks') # change background to white

background

ax = sns.regplot(x='year', y='total', data=df_tot,

color='green', marker='+', scatter_kws={'s': 200})

ax.set(xlabel='Year', ylabel='Total Immigration')

ax.set_title('Total Immigration to Canada from 1980 -

2013')

plt.show()

Use seaborn to create a scatter plot with a regression line to
visualize the total immigration from Denmark, Sweden, and
Norway to Canada from 1980 to 2013.

create df_countries dataframe

 df_countries = df_can.loc[['Denmark', 'Norway',

'Sweden'], years].transpose()

 # create df_total by summing across three countries

for each year

 df_total = pd.DataFrame(df_countries.sum(axis=1))

 # reset index in place

 df_total.reset_index(inplace=True)

 # rename columns

 df_total.columns = ['year', 'total']

 # change column year from string to int to create

scatter plot

 df_total['year'] = df_total['year'].astype(int)

 # define figure size

 plt.figure(figsize=(15, 10))

 # define background style and font size

 sns.set(font_scale=1.5)

 sns.set_style('whitegrid')

 # generate plot and add title and axes labels

 ax = sns.regplot(x='year', y='total', data=df_total,

color='green', marker='+', scatter_kws={'s': 200})

 ax.set(xlabel='Year', ylabel='Total Immigration')

 ax.set_title('Total Immigrationn from Denmark,

Sweden, and Norway to Canada from 1980 - 2013')

Geospatial visualization with Folium

Folium is that it was developed for the sole purpose of
visualizing geospatial data. While other libraries are available
to visualize geospatial data, such as plotly, they might have a
cap on how many API calls you can make within a defined
time frame. Folium, on the other hand, is completely free.
Folium is a powerful Python library that helps you create
several types of Leaflet maps. The fact that the Folium results
are interactive makes this library very useful for dashboard
building

Scenario

Datasets:

 San Francisco Police Department Incidents for the year
2016  Police Department Incidents] from San Francisco
public data portal. Incidents derived from San Francisco
Police Department (SFPD Crime Incident Reporting

system. Updated daily, showing data for the entire year of
2016. Address and location has been anonymized by
moving to mid-block or to an intersection.

 Immigration to Canada from 1980 to 2013  International
migration flows to and from selected countries - The 2015
revision] from United Nation's website. The dataset
contains annual data on the flows of international migrants
as recorded by the countries of destination. The data
presents both inflows and outflows according to the place
of birth, citizenship or place of previous / next residence
both for foreigners and nationals. For this lesson, we will
focus on the Canadian Immigration data

import numpy as np # useful for many scientific

computing in Python

import pandas as pd # primary data structure library

!conda install -c conda-forge folium=0.5.0 --yes

import folium

print('Folium installed and imported!')

Generating the world map is straightforward in Folium. You
simply create a Folium Map object, and then you display it.
What is attractive about Folium maps is that they are
interactive, so you can zoom into any region of interest
despite the initial zoom level.

define the world map

world_map = folium.Map()

display world map

world_map

You can customize this default definition of the world map by
specifying the centre of your map, and the initial zoom level.
All locations on a map are defined by their respective Latitude
and Longitude values. So you can create a map and pass in a
center of Latitude and Longitude values of 0, 0.
For a defined center, you can also define the initial zoom level
into that location when the map is rendered. The higher the
zoom level the more the map is zoomed into the center.
Let's create a map centered around Canada and play with the
zoom level to see how it affects the rendered map

define the world map centered around Canada with a low

zoom level

world_map = folium.Map(location=[56.130, -106.35],

zoom_start=4)

display world map

world_map

A. Stamen Toner Maps

These are high-contrast BW (black and white) maps. They
are perfect for data mashups and exploring river meanders
and coastal zones

create a Stamen Toner map of the world centered around

Canada

world_map = folium.Map(location=[56.130, -106.35],

zoom_start=4, tiles='Stamen Toner')

display map

world_map

B. Stamen Terrain Maps

These are maps that feature hill shading and natural
vegetation colors. They showcase advanced labeling and
linework generalization of dual-carriageway roads.

create a Stamen Toner map of the world centered around

Canada

world_map = folium.Map(location=[56.130, -106.35],

zoom_start=4, tiles='Stamen Terrain')

display map

world_map

Maps with Markers

Download and import the data on police department incidents
using pandas read_csv() method

df_incidents = pd.read_csv('https://cf-courses-

data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DV0101EN-

SkillsNetwork/Data%20Files/Police_Department_Incidents_-

_Previous_Year__2016_.csv')

print('Dataset downloaded and read into a pandas

dataframe!')

get the first 100 crimes in the df_incidents dataframe

limit = 100

df_incidents = df_incidents.iloc[0:limit, :]

Now that we reduced the data a little, let's visualize where
these crimes took place in the city of San Francisco. We will
use the default style, and we will initialize the zoom level to
12.

San Francisco latitude and longitude values

latitude = 37.77

longitude = -122.42

create map and display it

sanfran_map = folium.Map(location=[latitude, longitude],

zoom_start=12)

display the map of San Francisco

sanfran_map

Now let's superimpose the locations of the crimes onto the
map. The way to do that in Folium is to create a feature group
with its own features and style and then add it to the
sanfran_map

instantiate a feature group for the incidents in the

dataframe

incidents = folium.map.FeatureGroup()

loop through the 100 crimes and add each to the

incidents feature group

for lat, lng, in zip(df_incidents.Y, df_incidents.X):

 incidents.add_child(

 folium.features.CircleMarker(

 [lat, lng],

 radius=5, # define how big you want the

circle markers to be

 color='yellow',

 fill=True,

 fill_color='blue',

 fill_opacity=0.6

)

)

add incidents to map

sanfran_map.add_child(incidents)

You can also add some pop-up text that would get displayed
when you hover over a marker. Let's make each marker
display the category of the crime when hovered over.

instantiate a feature group for the incidents in the

dataframe

incidents = folium.map.FeatureGroup()

loop through the 100 crimes and add each to the

incidents feature group

for lat, lng, in zip(df_incidents.Y, df_incidents.X):

 incidents.add_child(

 folium.features.CircleMarker(

 [lat, lng],

 radius=5, # define how big you want the

circle markers to be

 color='yellow',

 fill=True,

 fill_color='blue',

 fill_opacity=0.6

)

)

add pop-up text to each marker on the map

latitudes = list(df_incidents.Y)

longitudes = list(df_incidents.X)

labels = list(df_incidents.Category)

for lat, lng, label in zip(latitudes, longitudes,

labels):

 folium.Marker([lat, lng],

popup=label).add_to(sanfran_map)

add incidents to map

sanfran_map.add_child(incidents)

If you find the map to be so congested will all these markers,
there are two remedies to this problem. The simpler solution
is to remove these location markers and just add the text to
the circle markers themselves as follows:

create map and display it

sanfran_map = folium.Map(location=[latitude, longitude],

zoom_start=12)

loop through the 100 crimes and add each to the map

for lat, lng, label in zip(df_incidents.Y,

df_incidents.X, df_incidents.Category):

 folium.features.CircleMarker(

 [lat, lng],

 radius=5, # define how big you want the circle

markers to be

 color='yellow',

 fill=True,

 popup=label,

 fill_color='blue',

 fill_opacity=0.6

).add_to(sanfran_map)

show map

sanfran_map

The other proper remedy is to group the markers into
different clusters. Each cluster is then represented by the
number of crimes in each neighborhood. These clusters can
be thought of as pockets of San Francisco which you can
then analyze separately.

To implement this, we start off by instantiating a
MarkerCluster object and adding all the data points in the
dataframe to this object.

from folium import plugins

let's start again with a clean copy of the map of San

Francisco

sanfran_map = folium.Map(location = [latitude,

longitude], zoom_start = 12)

instantiate a mark cluster object for the incidents in

the dataframe

incidents = plugins.MarkerCluster().add_to(sanfran_map)

loop through the dataframe and add each data point to

the mark cluster

for lat, lng, label, in zip(df_incidents.Y,

df_incidents.X, df_incidents.Category):

 folium.Marker(

 location=[lat, lng],

 icon=None,

 popup=label,

).add_to(incidents)

display map

sanfran_map

Choropleth Maps

A Choropleth map is a thematic map in which areas are
shaded or patterned in proportion to the measurement of the
statistical variable being displayed on the map, such as
population density or per-capita income. The choropleth map
provides an easy way to visualize how a measurement varies
across a geographic area, or it shows the level of variability
within a region

df_can = pd.read_excel(

 'https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DV0101EN-SkillsNetwork/Data%20Files/Canada.xlsx',

 sheet_name='Canada by Citizenship',

 skiprows=range(20),

 skipfooter=2)

print('Data downloaded and read into a dataframe!')

print the dimensions of the dataframe

print(df_can.shape)

Clean up data

clean up the dataset to remove unnecessary columns

(eg. REG)

df_can.drop(['AREA','REG','DEV','Type','Coverage'],

axis=1, inplace=True)

let's rename the columns so that they make sense

df_can.rename(columns={'OdName':'Country',

'AreaName':'Continent','RegName':'Region'},

inplace=True)

for sake of consistency, let's also make all column

labels of type string

df_can.columns = list(map(str, df_can.columns))

add total column

df_can['Total'] = df_can.sum(axis=1)

years that we will be using in this lesson - useful

for plotting later on

years = list(map(str, range(1980, 2014)))

print ('data dimensions:', df_can.shape)

In order to create a Choropleth map, we need a GeoJSON file
that defines the areas/boundaries of the state, county, or
country that we are interested in. In our case, since we are
endeavoring to create a world map, we want a GeoJSON that
defines the boundaries of all world countries

download countries geojson file

! wget --quiet https://cf-courses-data.s3.us.cloud-

object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DV0101EN-SkillsNetwork/Data%20Files/world_countries.json

print('GeoJSON file downloaded!')

Now that we have the GeoJSON file, let's create a world map,
centered around 0, 0 latitude and longitude values, with an
initisal zoom level of 2

world_geo = r'world_countries.json' # geojson file

create a plain world map

world_map = folium.Map(location=[0, 0], zoom_start=2)

And now to create a Choropleth map, we will use the
choropleth method with the following main parameters:

 geo_data , which is the GeoJSON file.
 data , which is the dataframe containing the data.
 columns , which represents the columns in the dataframe

that will be used to create the Choropleth map.
 key_on , which is the key or variable in the GeoJSON file

that contains the name of the variable of interest. To
determine that, you will need to open the GeoJSON file
using any text editor and note the name of the key or
variable that contains the name of the countries, since the
countries are our variable of interest. In this case, name is
the key in the GeoJSON file that contains the name of the
countries. Note that this key is case_sensitive, so you
need to pass exactly as it exists in the GeoJSON file.

generate choropleth map using the total immigration of

each country to Canada from 1980 to 2013

world_map.choropleth(

 geo_data=world_geo,

 data=df_can,

 columns=['Country', 'Total'],

 key_on='feature.properties.name',

 fill_color='YlOrRd',

 fill_opacity=0.7,

 line_opacity=0.2,

 legend_name='Immigration to Canada'

)

display map

world_map

Defining our own thresholds and starting with 0 instead of
6,918!

world_geo = r'world_countries.json'

create a numpy array of length 6 and has linear

spacing from the minimum total immigration to the

maximum total immigration

threshold_scale = np.linspace(df_can['Total'].min(),

 df_can['Total'].max(),

 6, dtype=int)

threshold_scale = threshold_scale.tolist() # change the

numpy array to a list

threshold_scale[-1] = threshold_scale[-1] + 1 # make

sure that the last value of the list is greater than the

maximum immigration

let Folium determine the scale.

world_map = folium.Map(location=[0, 0], zoom_start=2)

world_map.choropleth(

 geo_data=world_geo,

 data=df_can,

 columns=['Country', 'Total'],

 key_on='feature.properties.name',

 threshold_scale=threshold_scale,

 fill_color='YlOrRd',

 fill_opacity=0.7,

 line_opacity=0.2,

 legend_name='Immigration to Canada',

 reset=True

)

world_map

Creating Dashboards
Basic Plotly Charts

Airline Reporting Carrier On-Time Performance
Dataset

The Reporting Carrier On-Time Performance Dataset contains
information on approximately 200 million domestic US flights
reported to the United States Bureau of Transportation
Statistics. The dataset contains basic information about each
flight (such as date, time, departure airport, arrival airport)
and, if applicable, the amount of time the flight was delayed
and information about the reason for the delay. This dataset
can be used to predict the likelihood of a flight arriving on
time.

Import required libraries

import pandas as pd

import plotly.express as px

import plotly.graph_objects as go

Read the airline data into pandas dataframe

airline_data = pd.read_csv('https://cf-courses-

data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DV0101EN-SkillsNetwork/Data%20Files/airline_data.csv',

 encoding = "ISO-8859-1",

 dtype={'Div1Airport': str,

'Div1TailNum': str,

 'Div2Airport': str,

'Div2TailNum': str})

Preview the first 5 lines of the loaded data

airline_data.head()

Shape of the data

airline_data.shape

Randomly sample 500 data points. Setting the random

state to be 42 so that we get same result.

data = airline_data.sample(n=500, random_state=42)

Get the shape of the trimmed data

data.shape

plotly.graph_objects

Scatter Plot

Idea: How departure time changes with respect to
airport distance

First we create a figure using go.Figure and adding

trace to it through go.scatter

fig = go.Figure(data=go.Scatter(x=data['Distance'],

y=data['DepTime'], mode='markers',

marker=dict(color='red')))

Updating layout through `update_layout`. Here we are

adding title to the plot and providing title to x and y

axis.

fig.update_layout(title='Distance vs Departure Time',

xaxis_title='Distance', yaxis_title='DepTime')

Display the figure

fig.show()

Line Plot

Extract average monthly arrival delay time and see
how it changes over the year

Group the data by Month and compute average over

arrival delay time.

line_data = data.groupby('Month')

['ArrDelay'].mean().reset_index()

Display the data

line_data

Create a line plot with x-axis being the month and y-axis
being computed average delay time. Update plot title,
xaxis, and yaxis title.
Hint: Scatter and line plot vary by updating mode
parameter

fig = go.Figure(data=go.Scatter(x=line_data['Month'],

y=line_data['ArrDelay'], mode='lines',

marker=dict(color='green')))

fig.update_layout(title='Month vs Average Flight Delay

Time', xaxis_title='Month', yaxis_title='ArrDelay')

fig.show()

plotly.express

Extract number of flights from a specific airline that
goes to a destination

Group the data by destination state and reporting

airline. Compute total number of flights in each

combination

bar_data = data.groupby(['DestState'])

['Flights'].sum().reset_index()

Display the data

bar_data

Use plotly express bar chart function px.bar. Provide

input data, x and y axis variable, and title of the

chart.

This will give total number of flights to the

destination state.

fig = px.bar(bar_data, x="DestState", y="Flights",

title='Total number of flights to the destination state

split by reporting airline')

fig.show()

Bubble Chart

Get number of flights as per reporting airline

Group the data by reporting airline and get number of

flights

bub_data = data.groupby('Reporting_Airline')

['Flights'].sum().reset_index()

bub_data

Create a bubble chart using the bub_data with x-axis
being reporting airline and y-axis being flights.
Provide title to the chart
Update size of the bubble based on the number of flights.
Use size parameter.
Update name of the hover tooltip to reporting_airline
using hover_name parameter.

fig = px.scatter(bub_data, x="Reporting_Airline",

y="Flights", size="Flights",

 hover_name="Reporting_Airline",

title='Reporting Airline vs Number of Flights',

size_max=60)

fig.show()

Histogram

Get distribution of arrival delay

Set missing values to 0

data['ArrDelay'] = data['ArrDelay'].fillna(0)

Use px.histogram and pass the dataset.
Pass ArrDelay to x parameter.

fig = px.histogram(data, x="ArrDelay")

fig.show()

Pie Chart

Proportion of distance group by month (month
indicated by numbers)

Use px.pie function to create the chart. Input

dataset.

Values parameter will set values associated to the

sector. 'Month' feature is passed to it.

labels for the sector are passed to the `names`

parameter.

fig = px.pie(data, values='Month',

names='DistanceGroup', title='Distance group proportion

by month')

fig.show()

Sunburst Charts

Hierarchical view in other order of month and
destination state holding value of number of flights

Create sunburst chart using px.sunburst .
Define hierarchy of sectors from root to leaves in path
parameter. Here, we go from Month to DestStateName
feature.
Set sector values in values paramter. Here, we can pass
in Flights feature.
Show the figure

fig = px.sunburst(data, path=['Month', 'DestStateName'],

values='Flights')

fig.show()

Dash Components

Create a dash application layout
Add HTML H1, P, and Div components
Add core graph component
Add multiple charts

Import required packages

import pandas as pd

import plotly.express as px

Read the airline data into pandas dataframe

airline_data = pd.read_csv('https://cf-courses-

data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-

DV0101EN-SkillsNetwork/Data%20Files/airline_data.csv',

 encoding = "ISO-8859-1",

 dtype={'Div1Airport': str,

'Div1TailNum': str,

 'Div2Airport': str,

'Div2TailNum': str})

Preview the first 5 lines of the loaded data

airline_data.head()

Shape of the data

airline_data.shape

Randomly sample 500 data points. Setting the random

state to be 42 so that we get same result.

data = airline_data.sample(n=500, random_state=42)

Get the shape of the trimmed data

data.shape

Proportion of distance group (250 mile distance

interval group) by month (month indicated by numbers).

Pie Chart Creation

fig = px.pie(data, values='Month',

names='DistanceGroup', title='Distance group proportion

by month')

fig.show()

Theme

Proportion of distance group (250 mile distance interval
group) by month (month indicated by numbers).

 Import required libraries and create an application layout
 Add title to the dashboard using HTML H1 component
 Add a paragraph about the chart using HTML P

component
 Add the pie chart created above using core graph

component
 Run the app

For step 1 (only review), this is very specific to running
app from Jupyerlab.

For Jupyterlab,we will be using jupyter-dash library.
Adding from jupyter_dash import JupyterDash import
statement.
Instead of creating dash application using app =
dash.Dash() , we will be using app =
JupyterDash(__name__) .

For step 2,
Title as Airline Performance Dashboard
Use style parameter and make the title center
aligned, with color code #503D36 , and font-size as 40.
Check More about HTML section

For step 3,
Paragraph as Proportion of distance group (250
mile distance interval group) by month (month

indicated by numbers).

Use style parameter to make the description center
aligned and with color #F57241 .

For step 4, refer dcc.Graph component usage.
For step 5, you can refer examples provided here.

NOTE Run the solution cell multiple times if you are not
seeing the result.

Import required libraries

import dash

import dash_html_components as html

import dash_core_components as dcc

from jupyter_dash import JupyterDash

JupyterDash.infer_jupyter_proxy_config()

Create a dash application

app = JupyterDash(__name__)

Get the layout of the application and adjust it.

Create an outer division using html.Div and add title

to the dashboard using html.H1 component

Add description about the graph using HTML P

(paragraph) component

Finally, add graph component.

app.layout = html.Div(children=[html.H1('Airline

Dashboard',

https://dash.plotly.com/dash-core-components/graph?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkDV0101ENSkillsNetwork20297740-2021-01-01&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork-20297740&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M12345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=000026UJ
https://dash.plotly.com/layout?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkDV0101ENSkillsNetwork20297740-2021-01-01&cm_mmc=Email_Newsletter-_-Developer_Ed%2BTech-_-WW_WW-_-SkillsNetwork-Courses-IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork-20297740&cm_mmca1=000026UJ&cm_mmca2=10006555&cm_mmca3=M12345678&cvosrc=email.Newsletter.M12345678&cvo_campaign=000026UJ

 style=

{'textAlign': 'center',

 'color':

'#503D36',

 'font-

size': 40}),

 html.P('Proportion of

distance group (250 mile distance interval group) by

month (month indicated by numbers).',

 style=

{'textAlign':'center', 'color': '#F57241'}),

 dcc.Graph(figure=fig)])

if __name__ == '__main__':

 app.run_server(mode="inline", host="localhost")

Capstone Project
Reivewing Web APIs

Requests is a python Library that allows you to send

`HTTP/1.1` requests easily. We can import the library as

follows

import requests

import os

from PIL import Image

from IPython.display import IFrame

You can make a `GET` request via the method `get` to

[www.ibm.com]

url='https://www.ibm.com/'

r=requests.get(url)

We have the response object `r` , this has

information about the request, like the status of the

request. We can view the status code using the attribute

`status_code`

r.status_code

print(r.request.headers)

print("request body:", r.request.body)

You can view the `HTTP` response header using the

attribute `headers`. This returns a python dictionary of

`HTTP` response headers

header=r.headers

print(r.headers)

We can obtain the date the request was sent using

the key `Data`

header['date']

r.encoding

As the `Content-Type` is `text/html` we can use the

attribute `text` to display the `HTML` in the body. We

can review the first 100 characters

r.text[0:100]

You can load other types of data for non-text

requests like images, consider the URL of the following

image

Use single quotation marks for defining string

url='https://gitlab.com/ibm/skills-

network/courses/placeholder101/-/raw/master/labs/module%

201/images/IDSNlogo.png'

r=requests.get(url)

print(r.headers)

r.headers['Content-Type']

An image is a response object that contains the image

as a [bytes-like object]. As a result, we must save it

using a file object. First, we specify the file path and

name

path=os.path.join(os.getcwd(),'image.png')

path

with open(path,'wb') as f:

 f.write(r.content)

Image.open(path)

Using URL parameters in GET
Requests

url_get='http://httpbin.org/get'

payload={"name":"Joseph","ID":"123"}

r=requests.get(url_get,params=payload)

r.url

print("request body:", r.request.body)

print(r.status_code)

print(r.text)

r.headers['Content-Type']

r.json()

Collecting Job Data Using APIs
Collect job data from GitHub Jobs API
Store the collected data into an excel spreadsheet

Scenario 1

Using an API, let us find out who currently are on the
International Space Station (ISS
The API at [http://api.open-notify.org/astros.json] gives us the
information of astronauts currently on ISS in json format.

import requests

you need this module to make an API call

api_url = "http://api.open-notify.org/astros.json"

this url gives use the astronaut data

response = requests.get(api_url)

Call the API using the get method and store the

output of the API call in a variable called response.

if response.ok:

if all is well() no errors, no network timeouts)

data = response.json()

store the result in json format in a variable called

data

the variable data is of type dictionary.

print(data)

#print the data just to check the output or for

debugging

print(data.get('number'))

#Print the number of astronauts currently on ISS

astronauts = data.get('people')

print("There are {} astronauts on

ISS".format(len(astronauts)))

print("And their names are :")

for astronaut in astronauts:

 print(astronaut.get('name'))

#Print the names of the astronauts currently on ISS

Scenario 2

Collect Jobs Data using GitHub Jobs API
Objective: Determine the number of jobs currently open for
various technologies

Collect the number of job postings for the following languages
using the API

C
C#
C
Java
JavaScript
Python
Scala
Oracle
SQL Server
MySQL Server
PostgreSQL
MongoDB

Write a function to get the number of jobs for the given
technology.
Note: The API gives a maximum of 50 jobs per page.
If you get 50 jobs per page, it means there could be some
more job listings available.
So if you get 50 jobs per page you should make another API
call for next page to check for more jobs.
If you get less than 50 jobs per page, you can take it as the
final count

import requests

baseurl = "https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBM-DA0321EN-

SkillsNetwork/labs/module%201/datasets/githubposting.jso

n"

def get_number_of_jobs(technology):

 number_of_jobs = 0

 #your code goes here

 return technology,number_of_jobs

print(get_number_of_jobs('python'))

